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Abstract
The rapid and continuing emergence of antimicrobial 
resistance is challenging our ability to effectively fight 
bacterial infections. This challenge is particularly felt in clinical 
settings where patients experience severely infected chronic 
wounds. Despite the increased development and reliance 
on silver-based dressings, the evidence underpinning their 
clinical efficacy is inconclusive and there remain concerns 
and confusion about their use.

In this review, we describe the rationale for the current use 
of silver and silver-based wound dressings and highlight 
the progress and challenges associated with developing 
more advanced nanoparticle-based dressings for the safe 
and effective delivery of silver. Specifically, we describe the 
development of silver nanoparticles (AgNPs) with unique 
characteristics that render them applicable for controlling 
bacterial infections while simultaneously promoting wound 
healing through mechanisms including the dampening of 
inflammation and promotion of wound re-epithelialisation. 
Finally, we describe the latest progress in the development 
of different types of hydrogels for the therapeutic delivery 
of AgNPs to infected wounds. The possibility of designing 
and establishing multimodal silver therapies for the safe and 
effective treatment of infected wounds would be of great 
benefit for wound care management and improved patient 
outcomes.

Introduction
Wound healing is a multi-step, highly coordinated and 
regulated process that occurs in overlapping phases of 
haemostasis, inflammation, proliferation and remodelling1. 
Aimed at rapidly restoring tissue integrity and functions, 
these processes are highly regulated in the coordination 
of multiple cell types, including keratinocytes, fibroblasts, 
endothelial and immune cells, as well as numerous growth 
factors2. However, open wounds are highly susceptible to 
bacterial colonisation which is described as the presence 



Wound Practice and Research 174

Haidari et al. Silver-based wound dressings: current issues and future developments for treating bacterial infections

of multiplying bacterial populations in close proximity with 
no associated clinical signs and symptoms. A heavier 
colonisation load, also known as critical colonisation, may 
predispose an individual to wound infection3,4. Wound 
infection is described as the invasion of proliferating bacterial 
cells which are present at critically high levels – 105 colony 
forming units (CFU) of bacteria per gram of tissue – where the 
balance between virulence and host immunity tilts in favour 
of microorganisms5,6. In this stage, infection can trigger a 
cascade of host responses, including presentation of active 
disease symptoms – tissue inflammation, pus and exudate 
– which requires antibacterial treatment7. Furthermore, 
excessive accumulation of bacterial cells can result in 
bacteria forming a collective community cluster protected 
by self-produced exopolysaccharides (EPS) known as 
bacterial biofilms8. Consequently, wound infection raises 
critical healthcare concerns as it is one of the main causative 
factors for delayed wound healing which can result in serious 
detrimental effects9. Our inability to effectively clear bacteria 
at the early stages of colonisation increases the risk of severe 
infection and aids the production of biofilms10.

In Australia, more than 10% of patients will acquire a chronic 
wound infection, adding to the significant healthcare burden 
of $2.85 billion annually that is attributed to wound care11–13. 
Additionally, biofilms are reported to be associated with 
80% of chronic wounds and significantly contribute to their 
impaired healing14. Once established, biofilms are highly 
resistant and are recognised as a major contributor to the 
development of bacterial resistance to antibiotics15. Biofilms 
prevent antibiotic penetration into infected wounds and often 
result in treatment failure16.

In response to the increased incidence of multidrug-resistant 
(MDR) bacteria and the lack of new antibiotics in research 
and development, research focus has again shifted back 
to investigating the antibacterial capabilities of silver; 
this, however, is now with a stronger emphasis on new 
therapeutic modalities that can simultaneously promote 
tissue regeneration and control bacterial infection. The 
antimicrobial activity of silver has been used for hundreds of 
years in wound care with broad spectrum activity observed 
against a range of bacteria17,18. However, certain limitations, 
including its possible adverse effects on healthy skin tissue, 
have restricted its widespread use and have prompted 
research towards optimising the therapeutic benefits of silver 
while minimising the potential side effects for the treatment 
of wounds. These developments will be discussed and 
summarised in this review.

The use of silver in wound healing
Silver as an antimicrobial agent

Silver is a transition metal known to have many useful 
biological properties and is well-recognised for its broad 
spectrum antibacterial effects against both gram-negative 
and gram-positive bacteria. Silver in its metallic state (Ag0) is 
inert, while silver in its monoatomic state (Ag+) is biologically 

active and poses strong bactericidal activity19. Oxidation 
of silver atoms readily occurs in the presence of molecular 
oxygen (O2), leading to biologically active silver ions. The 
medical application of silver ions has been well documented 
for centuries and it has been employed as the first-choice 
treatment for many ulcerations and infectious diseases 
including venereal disease, bone perianal abscess, eye 
drops and burn wounds20,21. The discovery of antibiotics in 
the early 20th century led to a decline in the use of silver as 
an antimicrobial agent. However, the emergence of antibiotic 
resistance in the early 1960s led to a renewed interest in the 
use of silver products, including concentration-dependent 
(0.5% and 1%) silver nitrate (AgNO3) for the treatment of 
burns, 1% topical cream formulations, for example silver 
sulfadiazine (Ag-SD), and many other forms of advanced 
silver dressings22,23. Over the last 2 decades, this resurgent 
interest in silver has led to large-scale productions of 
numerous silver-containing dressings impregnated with silver 
salt or metallic silver, a selection of which is included in 
Table 15,19.

The difference in current silver wound dressings is largely 
based on both silver composition and the amount of active 
silver that is released into the wound. Mostly, the reported 
dressings are manufactured with the simple impregnation 
of silver nitrate into a dressing material that is susceptible 
to unregulated fast release, resulting in short-term activity 
and the need for frequent dressing changes24. Additionally, 
traditional silver dressings are susceptible to rapid inactivation 
by wound fluid, resulting in chemical complexes that can 
prevent their antibacterial activity25. To compensate for the 
potential loss of activity, the amount of silver in the wound 
dressings is excessively increased to replenish silver ions26.

However, excessive accumulation of silver into wounds has 
been shown to inhibit skin cell proliferation and impair wound 
healing27,28 and in vitro and in vivo studies have shown that 
application of silver dressings can increase host tissue toxicity 
and that care must be taken for its widespread usage29,30. 
Consequently, advances in the field of nanotechnology have 
enabled the possibility of developing silver in the form of 
nanoparticles (NPs) to deliver significantly smaller amounts 
of silver into the wounds, hence improving safety without 
compromising its excellent antibacterial properties31,32. 
Progress in this field is reflected by the increased number of 
patents developing silver for medicinal applications over the 
last decade (2007–2017), emphasising the high potential for 
industrial and healthcare applications33.

Silver nanoparticles

NPs are materials engineered with at least one dimension 
within the nanoscale range (1–100nm)34. A one-nanometre 
particle represents 10-9 metres in length which brings a 
significant difference in dimension and functionality compared 
to bulk counterparts. The major advantage of NPs is the 
versatility and tunability of their physicochemical properties 
depending on their application to medical purposes, including 



Volume 28 Number 4 – December 2020175

controlled drug delivery, improved efficacy and enhanced 
transport across biological barriers35. The continuing interest 
in silver nanoparticles (AgNPs) is related to the bactericidal 
efficacy of AgNPs at a much lower concentration than 
silver ions, as well as decreased toxicity to mammalian 
cells and other unique properties enabling optimisation of 
surface functionality36. AgNPs provide a sustained source of 
silver ions as the gradual oxidation of silver atoms releases 
biologically-active silver ions, providing a constant flux of 
silver that can target key bacterial pathogen structures37. 
In contrast to conventional silver nitrate, the combined 
action of a continuous supply of silver ions and the optimal 
physicochemical properties of AgNPs pose a substantial 

threat to bacterial survival when exposed to the treatment. 
Additionally, the versatile and dynamic properties of AgNPs 
provide a greater degree of flexibility in manipulating key 
physicochemical properties, including structure, size, surface 
functionalisation and biocompatibility, to achieve desirable 
antimicrobial benefits38. In particular, the large surface area 
of AgNPs allows more prominent numbers of active sites 
for interaction with biological species and makes AgNPs a 
better material than usual bulk materials39. The knowledge of 
how AgNPs and bacterial cells interact has greatly increased 
over the past decade and, as a result, several possible 
mechanisms of bactericidal action have been proposed; 
these are described below.

Product Manufacturer Dressing composition Silver composition

Acticoat™ Flex 3 & 7 Smith & Nephew An inner absorbent polyester layer 
protected between two outer layers of 
silver-coated polyethylene net

Nanocrystalline silver

Actisorb Plus 25 3M™ + KCI Carbonised fabric enclosed in a sleeve of 
spun-bonded non-woven nylon

Metallic silver

Allevyn® AG Smith & Nephew Polyurethane foam bonded to upper and 
lower adhesive coated polyurethane film

5% silver sulfadiazine

Aquacel® Ag ConvaTec Hydrocolloid fibre, sodium 
carboxymethylcellulose (NaCMC)

1.2% (silver nitrate)

Biatain Ag Coloplast Polyurethane foam non-adhesive or 
adhesive dressing

Ionic silver

SilverIon® Argentrum Medical Non-adherent, knitted nylon Metallic silver

Silvercel™ 3M™ + KCI Alginate, carboxymethylcellulose (CMC) 
and silver-coated nylon fibres

Ionic silver

Maxorbr® Extra Ag+ Medline Industries Calcium alginate and CMC fibres Ionic silver

Meplix® Ag Mölnlycke Health Care Silver-coated foam with silicone interface Silver sulphate

Mepitel® Ag Mölnlycke Health Care Silver-coated silicone Silver sulphate

Molnlycke 
Melgisorb® Ag

Mölnlycke Health Care Alginate fibres Ionic silver

PolyMem® Silver Ferris Mfg. Corp Polyurethane foam containing F-68 
surfactant, glycerol and starch polymer

Nanocrystalline silver

Promogran™ Prisma 
Ag

3M™ + KCI Oxidised regenerated cellulose, collagen 
and silver

Ionic silver

SilvaSorb® Gel Medline Industries Glycerol, polyacrylamide, CMC Ionic silver

Tegaderm® Alginate 
Ag

3M™ Guluronic acid, calcium alginate and CMC Silver sodium hydrogen 
zirconium phosphate

Urgotul® SSD Laboratoires URGO Polyester gauze dressing impregnated 
with particles dispersed in Vaseline paste

Silver sulfadiazine

V.A.C.® GranuFoam 
Silver

3M™ + KCI Silver-coated polyurethane sponge Metallic silver

Table 1. A selection of commercial silver wound dressings
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Antibacterial mechanisms of AgNPs

The continuous leaching of silver ions from AgNPs is 
effective against a broad spectrum of bacteria, including 
both gram-negative and gram-positive bacteria26. While it is 
clear that silver ions are highly reactive and possess a high 
affinity for organic amines, phosphates and, most notably, 
thiols present in DNA, proteins and cell membranes, it 
remains unclear whether the NPs themselves contribute to 
bacterial toxicity40,41.

There are three currently accepted mechanisms for the 
antibacterial action of AgNPs. Firstly, AgNPs can physically 
interact with a bacterial cell membrane, causing surface 
corrugation and hence an increase in membrane permeability, 
allowing AgNPs to penetrate intracellularly42. Secondly, 
AgNPs are responsible for attacking respiratory proteins and 
impairing the respiratory chain, hence hindering the production 
of energy and causing interference with mitochondria to 
generate reactive oxygen species (ROS)43. Finally, AgNPs can 
penetrate inside the bacterial cells which allows interaction of 
AgNPs with cellular structures and biomolecules, including 
lipids, proteins and DNA, leading to disruption of key cellular 
events and bacterial functioning44. These important dynamic 
processes lead to severe impairment of essential cellular 
functions, ultimately leading to bacterial cell necrosis and 
death36.

AgNPs are shown to be effective against a wide range of 
microorganisms, including bacteria, fungi and anaerobes, 
and the susceptibility differences are pathogen-specific 
based on the type of organism and membrane structures18. 
However, AgNPs mechanisms of action have largely been 
shown to be similar across different pathogens in targeting 
multiple key membrane structures to cause pathogen cell 
death. For example, Kim et al. report that 13.4nm AgNPs 
showed the minimum inhibitory concentration (MIC) against 
E. coli to be 6.6nM compared to 33nM for S. aureus45. The 
differences depend on the peptidoglycan layer where gram-
negative bacteria (i.e. E. coli and P. aeruginosa) are more 
susceptible than gram-positive bacteria (i.e. S. aureus and 
S. epidermidis). Recent studies have also proposed that the 
simultaneous interaction of AgNPs on multiple targets in 
bacterial cells makes it difficult for bacteria to develop silver 
resistance, a key advantage against current antibiotics36,46. 
A more detailed review of the antibacterial mechanism of 
AgNPs is reported elsewhere19,47.

Physicochemical properties of AgNPs enable high 
antibacterial activity

AgNPs exhibit particle‐specific activity, where the pathways 
involved in the antibacterial activity are highly dependent on 
the physicochemical properties of NPs. The physical and 
chemical properties of AgNPs’ structure – size and surface 
structure – are important for their toxicology48. In particular, 
the size of the NPs is the crucial factor that influences 
their intrinsic antibacterial properties49. The influence of 
particle size has been demonstrated in cell toxicity, tissue 

distribution, dermal penetration and cellular uptake41. 
Morones et al. demonstrate the size dependence activity of 
AgNPs (1–100nm) against a range of bacteria, namely E. coli, 
V. cholera, S. typhus and P. aeruginosa50. AgNPs in the 
range of 1–10nm showed significantly higher affinity in the 
attachment to the bacterial surface compared to larger sized 
AgNPs. Similarly, Agnihotri et al. studied the 5–100nm size of 
AgNPs and observed that the smallest AgNPs (5nm) showed 
the fastest and most efficient bacterial killing51. Additionally, 
many studies reveal that AgNPs smaller than 10nm provide 
favourable antibacterial properties49,52 and have a greater 
tendency to penetrate bacteria compared to large AgNPs53. 
Therefore, the unique size of AgNPs is particularly relevant in 
response to treating bacterial biofilms.

AgNPs have also been shown to physically interact with 
the biofilm matrix to deteriorate and disassemble the 
biofilm integrity as a route to access the bacterial cells54. 
The effective removal of biofilm depends on the diffusion 
capacity of the antimicrobial agent, where smaller NPs bring 
significant advantages40. Hence, small-sized AgNPs are 
expected to readily diffuse through the biofilms to release 
a high concentration of silver ions, eradicating the bacterial 
biofilms54. For example, Choi et al. show that 20nm AgNPs 
can penetrate up to 40µm in E. coli biofilm within the first 
hour, which is a significant advancement on the penetration 
of both antibiotics and silver nitrate55. In the context of chronic 
wounds, AgNPs provide a significant improvement to current 
silver dressings which are limited to killing only planktonic 
cells due to the nature of silver delivery and poor penetration 
of bacterial biofilms associated with chronic wounds.

In addition to the size, the surface charge of AgNPs is another 
important factor that determines its biological effectiveness. 
Most microbes display an overall negative surface charge 
and are expected to provide a higher affinity for positively 
charged AgNPs due to electrostatic interaction. Recent 
studies have shown to enhance the retention of AgNPs on the 
bacterial surface via electrostatic mediated interaction56,57. A 
recent study by El Badaway et al. demonstrates that the 
surface charge of AgNPs is the most important factor that 
governs the AgNPs’ toxicity to microbes58. Here, negatively 
charged, citrate stabilised AgNPs were the least toxic, 
whereas positively charged AgNPs (+38mV) showed the 
greatest pathogen toxicity. The increased adherence and 
accumulation of AgNPs towards the membrane causes 
irreversible morphological changes, resulting in the loss of 
membrane integrity and permeability50. The use of surface-
engineered AgNPs may also provide a superior advantage 
to overcome biofilm recalcitrance to antimicrobials. For 
example, Xiaoning Li et al. show that the neutral and anionic 
particles cannot accumulate on the membrane or penetrate 
bacterial biofilms, while cationic particles readily penetrate 
and efficiently dissipate bacterial biofilms59. Collectively, it is 
expected that the interplay between AgNPs’ size and surface 
structures will bring significant advancements for removing 
bacterial biofilms49.

Haidari et al. Silver-based wound dressings: current issues and future developments for treating bacterial infections
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Role of silver and AgNPs in wound healing

Despite the positive anti-microbial effects of silver, negative 
effects on healthy tissues and cells have been observed28. 
However, these are dependent on several factors, including 
the mode of delivery, silver concentration, release rate, and 
duration of exposure23,37. A fine balance is therefore required 
between delivering an effective amount of silver for the 
elimination of bacteria that causes minimal skin damage54.

The negative effect of AgNPs is only observed when they are 
used at high concentrations or for prolonged exposures28. 
In contrast, silver nitrates, even at low concentrations, 
are shown to induce an excessive inflammatory response 
which can result in delayed wound healing60. Similarly, 
clinical studies have shown that continuous application of 
silver sulfadiazine Ag-SD can lead to hypertrophic scars 
and systemic and cutaneous argyria61,62. These side effects 
are due to the unregulated release of silver ions resulting 
in unnecessary tissue accumulation predisposing the host 
to tissue toxicity.

The widespread and prolonged use of silver dressings 
is still the subject of debate as the knowledge of their 
toxicological aspects emerges showing negative impacts on 
tissue integrity. The application of AgNPs could potentially 
overcome the current silver limitations. Tian et al. have 
shown that AgNPs can decrease inflammatory reactions 
by modulating cytokine levels and can facilitate the early 
phase of wound healing63. Similarly, Singla et al. saw faster 
wound healing with improved re-epithelisation, significant 
expression of collagen and growth factor, and improved 
vasculogenesis following treatment with AgNPs64.

Additionally, the role of AgNPs in promoting fibroblast 
migration and differentiation has been well documented; 
however, this remains contradictory65. For example, 
studies have shown that AgNPs are able to promote 
wound healing through positive effects on fibroblast and 
keratinocytes migration as well as the ability to modulate cell 
differentiation66,67. In contrast, other pre-clinical studies have 
shown that extracts of silver solution from commercial silver 
dressings induce a significant anti-proliferative effect on 
keratinocytes and fibroblasts68. In fact, topical applications of 
silver solutions have been shown to induce adverse effects 
on skin cell viability which restricts its widespread use69.

Nevertheless, silver in the form of NPs (AgNPs) offers 
numerous benefits beyond the antibacterial effect. In addition 
to its anti-inflammatory and proliferative effect, it has also 
been shown to down-regulate metalloproteinases (MMP) 
to an optimal level that facilitates faster healing70. However, 
despite the significant potential offered by AgNPs, emerging 
clinical studies have shown conflicting evidence; a recent 
international consensus document on the use of silver in 
wound care has highlighted that future clinical studies should 
focus on determining the underlying mechanisms of silver 
ions and wound healing responses5.

Advanced therapeutic delivery of AgNPs

Significant effort has been invested to develop a new 
generation of silver-based therapies focusing on those that 
can eradicate pathogenic bacteria with a minimal amount of 
silver for an extended period. Different types of dressings, 
coatings, nanofibres and hydrogels have been developed 
to maximise the therapeutic benefits of silver71–73. An ideal 
antibacterial, as shown in Figure 1, is expected to provide 
a moist wound environment, offer a protective role in 
secondary infections, remove wound exudate, and promote 
tissue regeneration74.

In particular, hydrogel, a three-dimensional porous structure 
with high swelling capacity, has proven to be the material of 
choice for topical wound application capable of stimulating 
the body’s self-healing mechanism and promoting functional 
tissue development by providing a suitable microenvironment 
for healing75. Furthermore, hydrogels are biocompatible, 
have a consistency similar to the extracellular matrix (ECM), 
have the ability to remove excessive wound fluid, are 
biodegradable, and allow ease of synthesis76. In particular, 
the success of hydrogel delivery systems is highlighted by 
improved AgNPs stability, controlled drug release profile, 
and enhanced localised efficacy54. The hydrogel delivery 
system of AgNPs can be tailored for a prolonged delivery 
mode; this represents a great advantage concerning topical 
administration and sustained antibacterial efficacy. In 
addition, the physical and mechanical properties of the 
hydrogel are similar to the ECM, thereby presenting as an 
important supporting material for cellular proliferation and 
migration to stimulate key stages of wound healing77. Indeed, 
clinical studies to date have shown that the application of 
hydrogel biomaterials leads to improved wound healing 
outcomes78,79.

Several studies have shown the possibility of incorporating 
AgNPs in various types of the hydrogel; these hydrogels 
are designed to either act as a ‘smart’ hydrogel (pH 
or temperature-responsive) or a simple polymeric carrier 
for improved delivery of therapeutics. In particular, smart 
hydrogels that trigger the release of AgNPs in response to 
environmental stimuli are gaining significant clinical attention 
for their potential to provide on-demand targeted delivery80. 
For example, Huang et al. have developed a multifunctional 
hydrogel encompassing both pH and temperature 
responsiveness properties while also providing extended-
release of AgNPs for enhanced antibacterial effect81. Similarly, 
a recent in vitro study has shown controlled impregnation of 
ultrasmall AgNPs into a biocompatible thermo-responsive 
hydrogel for an extended-release profile with improved 
biofilm penetration capability54.

Additionally, other in vitro and in vivo studies have loaded 
AgNPs into different kinds of carriers, some of which include 
chitosan hydrogel to provide a synergistic antibacterial 
effect82, polyvinyl alcohol/chitosan83, and injectable hydrogel 
systems84. In fact, current research is heavily focused on 
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improved delivery of AgNPs using a variety of polymeric 
hydrogels either chemically or physically entrapped within 
the gel networks for slow and sustained release of silver, 
hence minimising the potentially toxic effects of silver2. In 
contrast to traditional silver dressings, AgNPs loaded into 
biocompatible hydrogels provide significant advantages 
through the capability to modulate the release properties 
and improve antibacterial effects. The release of AgNPs 
in a controlled and premeditated manner can be attained 
by modulating the hydrogel properties including porosity, 
diameters and degradability. As indicated by recent research, 
the advancement in hydrogel technology is expected to 
further accelerate to exponential levels to enable new 
functionalities and applicability in healthcare, paving the way 
for the development of an ideal AgNPs-loaded antimicrobial 
wound care product.

Conclusion
Despite significant advances in antimicrobial wound dressings, 
the treatment of infected wounds remains a significant clinical 
challenge. Recent progress has resulted in the development 
of numerous types of dressings, ranging from traditional 
to polymeric advanced dressings for different treatment 
purposes. However, no dressings are currently capable of 
providing multifunctional properties addressing all issues 
in chronic wounds, including controlling bacterial infection, 
regulating inflammation and promoting tissue regeneration. 
Medical devices and wound dressings impregnated with 
AgNPs may constitute an advanced and superior way to 
control acute and chronic bacterial wound infections. AgNPs 
present improvements on common antimicrobial strategies 
to overcome the current shortfalls due to bacterial resistance 
and improve therapeutic efficacy compared to conventional 
silver products (silver nitrate, silver sulfadiazine).

However, despite the recent progress, clinical approval of 
AgNP-based dressings is hampered by many challenging 
factors including the ability to control the silver loading, 
maintaining release profile, specificity to biological tissue, 
and biocompatibility. Therefore, it is anticipated that the 
safety of AgNPs-based formulations will be improved when 
encapsulated in biocompatible carriers such as hydrogels to 
combine multiple characteristics that are required to facilitate 
wound healing and infection control. AgNPs loaded into a 
stimuli-responsive hydrogel are gaining a lot of attention 
for their improved functionalities and capabilities for topical 
wound applications. Therefore, AgNPs-based hydrogels are 
expected to have great promise in treating acute and chronic 
wound infections.
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