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ABSTRACT
Lymphoedema is complex disorder with high disease morbidity characterised initially by progressive fluid accumulation and 
subsequently by altered tissue fibrosis and fat deposition. Primary lymphoedema is the result of congenital conditions that 
affect how lymph vessels are formed, whilst the inciting event in secondary lymphoedema is classically the disruption of 
normal lymphatic flow in the context of surgery or trauma. In addition to the altered fluid and fat homeostasis, lymphoedema is 
characterised by immune deficits that typically manifest as an increased susceptibility to infection and altered wound healing 
in the affected site. In contrast to the common perception of the lymphatics as a passive conduit for fluid, waste products, and 
immune cells, the altered immune homeostasis in lymphoedema patients suggests that the lymphatics play a more active role 
in the immune response. Indeed, lymphatic dysfunction appears to be a global phenomenon in all immune-related diseases. In 
this review, we highlight papers that support an active role for the lymphatics in immunity and link this evidence to the observed 
deficits in wound healing and immune surveillance present in lymphoedema.
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transport of fatty acids from the gastrointestinal tract, and 
the trafficking of immune cells to and from the periphery. 
Specifically, the transport of dendritic cells to lymphoid 
organs for the generation of adaptive immune responses and 
the drainage of local immune mediators for the maintenance 
of local immune homeostasis have been the primary immune 
roles of the lymphatic system described to date1,2.

Alterations in the peripheral lymphatics, as is seen with specific 
genetic deficiencies or peripheral lymphatic destruction, can 
lead to primary and secondary lymphoedema, respectively. 
Lymphoedema was originally considered a circulatory 
condition characterised initially by abnormal fluid distribution, 
with the progression to fat deposition/fibrosis in its later 
stages. However, there is also evidence of concurrent immune 
dysfunction in lymphoedema, suggesting that lymphoedema 
could also be classified as a functional immune disorder. 
The immune dysfunction present in lymphoedema typically 
manifests in excessive fibrosis, local inflammation, poor 
wound healing, and an increased susceptibility to infections 
and new malignancies3-5. Indeed, these consequences are 
a major contributor to the extremely high disease morbidity 
and poor quality of life consistently observed in patients 
with lymphoedema as well as being the primary reason for 
hospitalisation in this patient population3.

However, the mechanisms leading to the immune deficits in 
lymphoedema remain poorly understood. While the role of 
the peripheral lymphatic system in immune trafficking is well 
described, it may be that the lymphatics play additional roles 

INTRODUCTION
The peripheral lymphatic system is made up of a complex 
network of lymphatic vessels that connect local tissue sites 
with secondary lymphoid organs. The peripheral lymphatics 
play an essential role in the regulation of fluid balance, in the 
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in regulating the phenotype and function of local immune 
populations.

While the incidence of lymphoedema is relatively low, the 
insights gained from understanding the progression from 
primary lymphatic disruption to the observed patterns of 
altered immune homeostasis has important consequences 
for progressing our understanding of the complexity 
of immunological disease in humans. Indeed, de novo 
lymphangiogenesis, the formation of new lymphatic vessels, 
has been identified in the majority of human inflammatory 
conditions, including psoriasis, renal inflammation, and 
chronic airway inflammation6,7. In addition to the production 
of new lymphatic vessels, the phenotype of the lymphatic 
vessels present can also be altered as compared to 
controls, suggesting altered lymphatic function contributes 
to the pathogenesis of these diseases8,9. Finally, peripheral 
lymphatic vessels also play key roles in transplant rejection 
and tumour metastases10. Therefore, it appears clear that 
lymphatic function has strong implications for a wide range 
of immune-based conditions, supporting evidence of an 
active role of the lymphatics in immunity.

In this review, we attempt to consolidate the evidence 
surrounding lymphatic-mediated immune responses to 
provide mechanistic insights into the progression from 
disrupted lymphatic vessel flow to altered wound healing and 
immune clearance in lymphoedema.

LYMPHATIC REGULATION OF THE IMMUNE 
RESPONSE
The peripheral lymphatics system has been implicated in the 
regulation of immune cell migration and activation, as well as 
the clearance of local immune mediators and waste products 
from the effector sites, all of which are influenced by de novo 
lymphangiogenesis1,2,11-14. While these functions have been 
described in a number of primarily in vitro or model organism 
studies, there remains a lack of strong mechanistic links 
between these functions and the observed immune deficits 
in lymphoedema or other immune conditions with lymphatic 
involvement.

Regulation of cellular migration

The migration of dendritic cells from an infected tissue 
site to the draining lymph node is the essential first step 
in the initiation of T cell and B cell responses to peripheral 
infections. Thus, the lymphatics role in modulating the 
migration and function of dendritic cells has important 
consequences for adaptive immunity.

In response to inflammation, dendritic cells are known to 
upregulate the expression of a range of different chemokine 
receptors and integrins, which facilitate their migration 
through the lymphatics to the draining lymph nodes15. The 
most prominent molecules involved in dendritic cell migration 
through the lymphatics appear to be the chemokine receptor 
CCR7 (recognising lymphatic expressed CCL21) and the 

integrin LFA-1 (recognising lymphatic expressed ICAM-
1)2,11,13,16-18, although a number of other molecules have been 
implicated19,20. However, given that the lymphatics have been 
shown to upregulate the expression of the chemokine CCL21 
and integrin ICAM-1 in response to the same infectious 
signals that induce the expression of their partner molecules 
on dendritic cells, the activation programs of both dendritic 
cells and the lymphatics appear inseparable and equally 
important in this initiation step for adaptive immunity. In 
further support of the active role the lymphatics play in 
this process, lymphatic activation can induce the structural 
reorganisation and formation of ICAM-1 enriched microvilli 
structures, which optimise dendritic cell attachment and 
migration17.

While, the CCL21-CCR7 axis has been strongly linked 
with dendritic cell migration through the lymphatics, it 
is also important to note that CCL21 is an important 
chemoattractant for recruiting local macrophages to sites of 
inflammation (without inducing their migration through the 
lymphatics to the draining lymph nodes)21.

Given that T cells and neutrophils can also traffic through 
the peripheral lymphatics system and migrate in response 
to chemokine gradients, the lymphatics likely play a similar 
active role in inducing the migration and local recruitment of 
these local cell populations22-24. For example, various T cell 
subsets also express CCR7 and thus their migration or local 
recruitment is likely to be influenced by lymphatic expressed 
CCL2123.

Regulation of cellular activation

While the role of the lymphatics system in regulating cell 
migration is well established, there is strong circumstantial 
evidence to suggest an additional role in regulating cellular 
activation. However, these mechanisms have largely not 
been confirmed in vivo and as such the relative importance 
of this lymphatic function remains unclear.

While playing a primary role in inducing cellular migration, it 
is important to note that chemokine and integrin signalling 
additionally acts to induce cell activation25,26. For example, 
mice deficient in CCL21 (which signals through the chemokine 
receptor CCR7), not only show deficits in dendritic cell 
migration, but important additional defects in dendritic cell 
maturation, proliferation, differentiation, endocytosis function 
and overall survival25. Similarly, lymphatic expressed ICAM-1 
(which signals through the integrin partner LFA-1) has been 
shown to downregulate dendritic cell expression of CD86 
and other maturation markers, which in turn reduces the 
dendritic cell’s ability to activate T cell responses26. Thus cell 
migration and activation are clearly linked, and as such, the 
lymphatics are clearly important regulators of this process.

In addition to the expression of molecules involved in cellular 
migration, the lymphatics can also express a wide range 
of poly-functional pro-inflammatory and anti-inflammatory 
molecules13,27. For example, lipopolysaccharide has been 
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shown to induce the expression of IL-6 in lymphatic 
endothelial cells in vitro13. IL-6 is an extremely important 
immune regulator that has been shown to regulate the 
activation and effector function of neutrophils, macrophages, 
and dendritic cells, among a range of other functions28. In 
addition, IL-6 has been clearly shown to contribute to the 
autoimmune driven inflammation in disease like rheumatoid 
arthritis, and as such has been successfully targeted with 
the IL-6R antibody, Tociluzimab28. While a large number 
of immune cell populations have been shown to express 
IL-6 including fibroblasts, macrophages, neutrophils, and 
T-cells, the observation of lymphatic IL-6 expression strongly 
suggests that the lymphatics are contributing to immune 
cell activation and the progression of the immune response. 
Indeed, this mechanism of immune regulation can be 
extended to a large number of other immune mediators that 
the lymphatics express in response to stimulation29.

Regulation of Immune Homeostasis through Soluble 
Mediators and Antigen

As the primary conduit system draining fluid and waste tissues 
from peripheral sites, the lymphatics play an important role 
in maintaining the homeostasis of these factors. While the 
production of cytokines and chemokines (produced by both 
lymphatic endothelial cells and other immune populations) 
shape and direct the local immune response, the removal of 
these mediators is equally important for preventing chronic 
inflammation or aberrant signalling pathways1,12.

The lymphatics are also involved in the active removal 
of cytokines and chemokines from circulation via the 
expression of scavenger receptors like D6, which internalise 
chemokines and pro-inflammatory cytokines1,12. Importantly, 
mice deficient in the scavenger receptor D6, showed grossly 
exaggerated inflammatory responses at local sites and 
altered patterns of immune cell migration and recruitment30, 
a general pattern sharing some similarities with the immune 
deficits in lymphoedema3-5.

Finally, the passive transport of antigen to the secondary 
lymphoid organs is important for maintaining self-tolerance (to 
self-antigens only expressed in the periphery) or generating 
immune responses (to pathogenic antigens), separate from 
the dendritic cell-mediated transport of these antigens1,12.

Regulation of Immune Homeostasis through 
Lymphangiogenesis

De novo lymphangiogenesis appears to be a critical step 
in many inflammatory contexts for promoting fluid drainage 
and immune cell migration from the site of inflammation, 
and as such is frequently observed in human disease31,32. 
Lymphangiogenesis is classically induced by the canonical 
vascular endothelial growth factors (VEGFs)-A, -C, and -D. 
Importantly, these VEGF molecules are commonly produced 
by activated macrophages, T cells, mast cells, and dendritic 
cells in response to a diverse range of immunogenic stimuli6,33-35, 
which provides a clear explanation for the observed changes 

in lymphangiogenesis in the majority of human immune-
mediated diseases. Furthermore, lymphangiogenesis can 
also be induced by a range of secondary immune mediators 
(for example, IL-10, TFGβ) either directly or indirectly via 
the upregulation of VEGF expression by other immune 
cells36,37. Similarly, lymphangiogenesis can also be negatively 
regulated by immune mediators, including the Th2 cytokines 
IL-4 and IL-1338.

Most importantly, lymphangiogenesis is not always associated 
with favourable outcome, as the pathogenesis of ocular 
inflammation, transplant rejection, and tumour metastasis 
are often driven by undesired lymphangiogenesis10,39. 
Furthermore, it has been suggested that chronic inflammation 
can drive a disordered process of lymphangiogenesis, which 
actually impairs immune cell migration and fluid drainage when 
compared to the structured process of lymphangiogenesis in 
an appropriate inflammatory response40,41.

STIMULUS-SPECIFIC LYMPHATIC ACTIVATION
The immune system allows for appropriate responses to 
distinct pathogens through the generation of stimulus-
specific effector programs, such as the classical division 
between Th1 versus Th2 versus Th17 T cell responses. 
A given immune response is established through the 
integration of primary (to pathogens) and secondary (to 
immune cytokines/chemokines) activation signals. It is the 
capacity of these immune cells to generate the appropriate 
stimulus-specific response that determines whether the 
immune response effectively controls the pathogen or results 
in the development of an inappropriate response leading to 
chronic inflammation or autoimmunity. Thus to be considered 
an active regulator of the immune response, the lymphatics 
need to generate stimulus-specific effector programs in 
response to distinct stimuli.

Lymphatic endothelial cells express functional toll-like 
receptors (TLRs) 1–6 and 9 and can thus respond to a 
range of pathogenic stimuli including lipopolysaccharide 
(LPS) (via TLR4) or lipoteichoic acid (via TLR2); both major 
constituents of the bacterial cell wall10,13,42-44. Importantly, as 
with other cell populations distinct patterns of cytokines and 
chemokines are induced when lymphatic endothelial cells 
are stimulated in vitro with different TLR ligands10,13,43,44. For 
example, lipopolysaccharide (signalling via TLR4) induced 
the upregulated expression of the chemokine CCL20 in 
lymphatic endothelial cells in vitro, while stimulation with 
heat-killed Listeria monocytogenes (signalling primarily 
through TLR2) did not10.

Consistent with their response to a number of diverse 
pathogenic stimuli, lymphatic endothelial cells can also 
respond to a number of key immune mediators including 
adrenomedullin, chemokine (C-X-C Motif) ligand 12 (CXCL12), 
high-mobility group box 1 (HMGB1), histamine, hypoxia 
inducible factor-alpha (HIF-1α), interferon alpha (IFNα), IFNβ, 
IFNγ, IL-1β, IL-4, IL-6, IL-8, IL-13, IL-20, IL-27, oncostatin 
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M, retinoic acids, thrombin, transforming growth factor beta 
(TFGβ), and tumour necrosis factor alpha (TNFα)18,37,45-60. 
Importantly, the responses to these secondary activation 
signals also appear to be stimulus-specific. One paper 
described unique effector responses observed to TNFα, 
IL-1β, or IFNγ stimulation in vitro, including the selective 
upregulation of the cell adhesion molecule E-selectin, in 
response to stimulation with IFNγ, but not to stimulation 
with TNFα or IL-1β47. Consistent with the pathogen-specific 
regulation of CCL20, lymphatic endothelial cell stimulation 
with TNFα or oncostatin M also induced the expression of 
CCL20 in vitro, while stimulation with IL-1β did not10.

This stimulus-dependent specificity is also observed in 
more physiological models of inflammation. For example, 
large differences in the transcriptional expression of key 
chemokines and integrins were observed in lymphatic 
endothelial cells isolated from a mouse model of oxazolone-
induced contact hypersensitivity versus a mouse model 
of Complete Freund’s Adjuvant-induced inflammation61. 
Given the diverse immunoregulatory roles of the lymphatics 
(as discussed above), it seems likely that the different 
lymphatic activation programs in these two models is 
at least partially contributing to the gross differences in 
inflammation, cell activation/migration, and levels of oedema 
additionally observed in these models61. However, the relative 
contribution of the lymphatics to these differences, as 
compared to the effect of other cell populations (for example, 
macrophages) that are differentially activated in these two 
models is difficult to assess.

It should also be noted that over 1000 genes were differentially 
expressed in the inflammation-activated lymphatics in these 
models61. Given that we have only established the relevance 
of a few chemokines and adhesion molecules in this list, these 
results strongly highlight our relatively poor understanding of 
lymphatic function.

CLINICAL SIGNIFICANCE OF LYMPHATIC 
FUNCTION
While a number of diverse immune functions have been 
suggested for the peripheral lymphatics (as discussed 
above), the majority of these studies have been performed in 
model systems and their importance in clinical disease is less 
clear. However, there is strong indirect evidence to suggest 
that the in vitro observations of lymphatic immune function 
are relevant in vivo.

In a study that compared gene expression in lymphatic 
endothelial cells isolated from lymphoedema skin and normal 
controls, over 2500 genes were found to be differentially 
regulated, including important pro-inflammatory genes IL-6, 
IL-8, and IL-3214. It should be noted that this study would have 
ideally compared gene expression in lymphoedema to gene 
expression in ‘normal’ inflammation, in order to better assess 
which genes were specifically dysregulated in response to 
the unique inflammatory context of lymphoedema. Lymphatic 

filariasis (also known as elephantiasis) is a tropical disease 
caused by the filarial parasites Wuchereria bancrofti (90% 
of cases), Brugia malayi, and Brugia timori that presents 
with a clinical picture remarkably similar to lymphoedema62. 
In a gene expression study assessing the effects of 
lymphatic endothelial cell stimulation with Brugia malayi, 
key immunological molecules related to lymphangeogenesis 
and immune cell migration/activation were shown to be 
differentially expressed as compared to controls14. Finally 
a large number of differentially expressed genes have been 
observed in a study assessing lymphatic endothelial cell 
gene expression in type 2 diabetic patients, whose deficits in 
wound healing and immunity share some characteristics with 
those in lymphoedema patients63. Thus, these three gene 
expression studies all showed the differential expression of a 
large number of immune-related genes in different contexts 
where there is known lymphatic and immune dysfunction. 
While not directly assessed, when considered in the context 
of the in vitro studies (as discussed above), these results 
imply that the altered pattern of immune molecule expression 
is contributing to the altered immune homeostasis in a 
clinical context.

Alterations in the lymphatics system, especially in the 
phenotype of lymphatic vessels and in patterns of de novo 
lymphangiogenesis, have also been observed in the majority of 
human immune diseases6-9. As an example, the autoimmune, 
inflammatory skin condition psoriasis is characterised by a 
number of changes in the peripheral lymphatics system that 
together imply a role for the lymphatics in the pathogenesis 
of this disease. The immune pathogenesis in psoriasis is not 
fully understood, but thought to be driven by T cells polarised 
towards a Th-1 or Th-17 phenotype64,65. Interestingly, the 
lymphatics have been shown to be able to regulate their 
expression of key immune mediators in a stimulus-specific 
manner in response to the majority of cytokines that have 
been implicated in the pathogenesis of psoriasis64,65, 
including IL-2754 or TNFα47. In addition, increased tissue 
levels of VEGF, with corresponding increases in lymphatic 
vessel density, have been frequently observed in the skin of 
psoriasis patients32,66. Finally, in a mouse model of psoriasis, 
systemic VEGF blockade significantly improved the levels of 
inflammation, further implying a direct immunoregulatory role 
for the lymphatics67. Thus, while these mechanisms have not 
been conclusively established, these results strongly suggest 
that the lymphatics are in fact playing an important role in 
psoriasis and related immune-mediated conditions.

LINKING LYMPHATIC DAMAGE TO THE 
IMMUNE PATHOGENESIS OF LYMPHOEDEMA
Secondary lymphoedema is generally initiated by local 
lymphatic damage following radiation or surgery, but 
results in a number of global immune deficits, including 
defects in immune surveillance (susceptibility to infection 
and malignancy) and local immune homeostasis (abnormal 
fibrosis, inflammation, and wound healing)3,4. While these 
immune deficits are commonly observed in lymphoedema 
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patients, the mechanisms of disease progression following 
an initial lymphatic insult are poorly understood. However, 
the active immune roles of the peripheral lymphatics (as 
discussed in this review) may provide an insight into the 
pathogenesis of lymphoedema (Figure 1).

The primary result of lymphatic vessel damage following 
interventions like surgery or radiotherapy is a gross reduction 
in drainage function. This results in the local accumulation 
of fluid, waste products, immune mediators (cytokines and 
chemokines), and immune cells that are unable to effectively 
transit to lymphoid organs. The irregular build up of these 
molecules appears to be the initiating factor driving the altered 
activation programs in the lymphatic endothelial cells and in 
other immune cell populations (for example, macrophages) 
observed in lymphoedema and chronic inflammation14,61. 
However, given that the lymphatics are known to respond 
to immune mediators produced by macrophages (including 
TNFα, IL-1β, and IFNγ)47 and produce immune mediators 
that regulate the function of macrophages (including IL-6 
and CCL21)13, it is likely that abnormal lymphatic activation 
perpetuates the abnormal activation of macrophages, 

and visa versa. Indeed, while the accumulation of these 
molecules may initially result in an excessive, but otherwise 
normal, pattern of inflammation, it is likely that prolonged 
exposure and persistent immune cell activation results in 
the disordered and abnormal inflammation characteristic of 
lymphoedema.

Given that both macrophages and the lymphatics system 
have been critically implicated in the normal wound healing 
process68-71, it is not surprising that wound healing is 
severely compromised in the grossly abnormal immune 
microenvironment of lymphoedema72,73. Specifically, 
IL-10 and TGFβ have both been linked to the abnormal 
wound healing observed in lymphoedema and both have 
been shown to modulate the phenotype and function of 
both macrophages and lymphatic endothelial cells50,74,75. 
Similarly, abnormal lymphatic endothelial cell activation 
and subsequent abnormal modulation of dendritic cell 
function, coupled with gross defects in the ability of dendritic 
cells to migrate to lymphoid organs through the disrupted 
lymphatics, likely explains the increased susceptibility to 
infection in lymphoedema.

Figure 1
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CONCLUSIONS
This review has focused on highlighting the lymphatics as an 
active and integrated component of the immune response. 
While the initiating process in secondary lymphoedema 
may be disruption of lymphatic flow and the accumulation 
of fluid, waste products, and immune mediators, these 
initial processes are likely to drive a dysregulated cycle of 
abnormal lymphatic and immune cell activation, that affects 
the normal capacity of these cells to mediate wound healing 
and immune clearance.
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ANTIMICROBIAL FOAM DRESSINGS 
WITH PHMB (POLYHEXAMETHYLENE BIGUANIDE HCI)
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Results of the trial suggests PHMB impregnated foam 
dressing as a viable option for the treatment of critically 
colonised chronic wounds.


