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ABSTRACT
Therapeutic antibodies present numerous opportunities for 
the treatment of wounds and cutaneous conditions; however, 
they have not been widely adopted due to the difficulty of 
administering antibodies through the skin. Local antibody 
administration to the skin may result in fewer side effects, 
reduce cost of therapy and be less invasive than systemic 
methods and recent advances in antibody engineering 
have addressed many stability and formulation challenges. 
Penetration of the epidermal barrier is crucial to effective 
delivery of antibodies and other protein drugs and can be 
achieved through chemical or physical methods. Chemical 
penetration enhancement is poorly suited for delivery of 
large hydrophilic molecules such as antibodies; however, 
enhancers based on surfactants or terpenes may improve 
antibody delivery to the dermis and novel cell-penetrating 
peptides provide opportunities for well-tolerated local 
antibody delivery. Physical penetration enhancement methods 
(including electroporation, iontophoresis, microneedles and 
ultrasound) address many formulation challenges common 
to chemical penetration enhancers; however, more studies 
are required to demonstrate effective antibody delivery for 
clinical translation. While topical antibody administration 
to the skin remains challenging, advances in antibody 
engineering and skin penetration enhancement may render 
antibodies more viable treatment options for improving 
wound outcomes.
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INTRODUCTION
This narrative review aims to provide an overview of recent 
advances in the field of antibody delivery to the skin. 
Methods that have successfully delivered antibodies or 
large proteins through the epidermal barrier, particularly in a 
clinical setting, are described and discussed in the context of 
wound applications including chronic wounds, chronic skin 
blistering and scar management.

Poor outcomes from wounds represent an increasing 
health burden in Australia as populations of diabetic, obese 
and elderly persons who exhibit deficient wound healing 
increase. Therapeutic antibodies have the potential to 
treat many kinds of wounds1; however, antibody therapies 
for wounds have not been widely adopted due to the 
difficulty of formulating antibodies for local administration 
and penetration through the skin. Antibodies are one of the 
fastest growing categories of biopharmaceuticals today, with 
over 60 antibodies approved for use as therapeutics and 
over 50 candidates currently in phase III clinical studies2. 
Presently, antibodies are employed in the treatment of 
cancer, inflammatory disease and autoimmune disorders3 
and their success is attributed to their high specificity and 
binding affinity to their target proteins with reduced side 
effects compared to small molecules4. In recent years, 
preclinical and clinical research has demonstrated roles for 
antibodies for a number of cutaneous conditions including 
psoriasis5,6, atopic dermatitis7,8, skin cancers9 and wound 
healing10-14. However, the development of antibody therapies 
for skin conditions is challenging as antibodies exhibit poor 
tissue permeability15 and are thus not efficiently absorbed 
through the intact skin barrier. This complicates the use 
of antibodies for wound applications, as while therapies 
promoting active healing may be directly administered to 
open wounds, administration to intact skin would be required 
for blister or scar management.

Human antibodies, also termed immunoglobulins, are 
antigen-binding proteins consisting of four polypeptide 
chains arranged in a Y-shape (Figure 1). Two heavy chains 
linked by disulfide bridges form the constant (Fc) stem region 
of the antibody molecule, while a light chain linked with 
each heavy chain forms two identical antigen binding (Fab) 
regions. The Fab regions are responsible for the specificity 
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of the antibody, while the Fc region determines the antibody 
isotype and influences further immune signalling, termed 
secondary effector functions. Antibodies can function as 
therapeutics via direct neutralisation of their targets by 
blocking active sites on the protein, or by binding to the 
target and triggering its destruction by secondary effector 
functions (Figure 2) as in the case of many anti-cancer 
antibody therapies9. The function of antibodies is dependent 
on their three-dimensional structure, which enables binding 
to a target antigen; consequently care must be taken when 
developing antibody therapeutics to ensure antibodies are 
properly folded and retain binding capacity.

ANTIBODIES FOR TOPICAL ADMINISTRATION
Antibodies have previously been used in the management 
of multiple cutaneous conditions, including in inflammatory 
skin diseases, healing wounds or managing scars. Clinical 
studies have shown improvement in psoriatic lesions after 
administration of antibodies targeting inflammatory mediators 
tumour necrosis factor alpha5, interleukin 2316 and interleukin 
1717, and atopic dermatitis has been successfully treated 
with antibodies targeting interleukin 4 receptor alpha18. 
Antibodies against wound mediators including Flightless 
I10,19 and tumour necrosis factor alpha20 have been shown to 
improve healing in a number of wound types, and antibodies 
against transforming growth factor beta have been used to 
reduce scarring12,21. Therapeutic antibodies are generally 
administered by intravenous, subcutaneous or intramuscular 
injection, as direct oral administration commonly employed 

for small molecule drugs would result in gastric digestion of 
the proteins15. While injection of antibodies has been used 
successfully for cutaneous conditions22-25, direct application 
to the skin may confer several advantages to systemic 
methods. Topical administration provides local therapeutic 
effect while reducing systemic adverse effects26-28, avoids 
drug metabolism and dilution thereby reducing the quantity of 
antibody required29 and noninvasively delivers therapeutics to 
patients with simplified dosage requirements30,31. Antibodies 
can be prohibitively expensive to use, thus approaches 
that use lower dosages via topical administration would 
reduce costs and allow therapies to be available to more 
patients32. Local administration of antibodies avoids drug 
metabolism and improves retention within the tissue33, thus 
antibodies for treatment of chronic wounds or scarring may 
only require dosing every 1–4 weeks to maintain effective 
concentrations within the wound. Topical administration 
of gel-formulated anti-tumour necrosis factor antibody 
(Infliximab) has previously been effective in the treatment of 
open chronic wounds20; however, lesions with intact epithelial 
barriers including blisters, burns, partially re-epithelialised 
wounds and scars are not readily accessible by antibodies 
within a gel formulation.

Despite the potential benefits of therapeutic antibodies 
for cutaneous conditions, protein-based drugs exhibit 
challenging properties that render their formulation and 
delivery complex. As correct folding of antibodies is essential 
to their function, protein stability must be considered 

Figure 1: Antibody structure 
Human antibodies are composed of four polypeptide chains: 
two heavy chains (dark blue) and two light chains (light blue). 
Antigen binding sites are each formed by the variable regions 
of a light chain and a heavy chain (Fab regions). The constant 
regions of the heavy chains form the tail (Fc region). The two 
Fab regions and Fc region are linked by a flexible hinge region 
that improves the ability of the Ab to bind antigen.

Figure 2: Therapeutic antibody functions 
Therapeutic antibodies function through two main routes: direct 
neutralisation or secondary effector functions. Neutralisation 
occurs by binding circulating mediators or their receptors and 
preventing further signalling. Secondary effector functions 
recruit immune cells to engulf the target or directly kill the 
target cell.
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when developing antibody-based biotherapeutics. Protein 
aggregation is the most common stability issue encountered 
in antibody development34,35 which influences the potency36 
and safety of antibody therapies37,38. Consequently, 
approaches to alter the aggregation of antibodies through 
glycosylation39, altering protein charge40,41 or the rational 
design of antibody sequences to remove aggregation-prone 
regions41-43 are crucial to the formulation of an effective 
cutaneous antibody therapy. Fragments of antibodies which 
comprise the Fab region without the Fc region can still 
exert neutralising function, and may exhibit greater tissue 
penetration44 and stability45,46 than their whole antibody 
counterparts. Systemically administered antibodies are 
generally lyophilised for reconstitution at the bedside; 
however, topical formulations are often in gel or cream 
forms, adding additional complexity to maintaining stability 
of antibodies. Consequently, antibody therapies for skin 
administration are likely to require multiple re-engineering 
processes to optimise formulation stability and tissue 
penetration into the skin.

CHALLENGES OF DELIVERING DRUGS TO 
WOUNDS
Skin acts as a boundary between the body and the 
environment and effectively protects internal structures 

from infection, physical and chemical injury and the loss of 
water or other valuable compounds. Skin also constitutes 
a barrier to the topical delivery of antibodies, largely due to 
the hydrophobic nature of the outer keratinised layer, which 
prevents delivery of hydrophilic and polar compounds such 
as proteins47.

The epidermis represents the outermost layer of the skin and 
is highly cellular, consisting primarily of keratinocytes. The 
top layer of the epidermis is termed the stratum corneum 
and comprises a 10–15 µm thick layer of dead cornified 
keratinocytes embedded in a lipid-rich extracellular matrix 
(ECM). Below the epidermis lies the dermis, comprised of 
fibrous collagen punctuated with blood vessels, hair follicles, 
nerves and secretory glands. As the dermis is a source of 
fibroblasts and immune cells which secrete proliferative 
and inflammatory wound mediators, this is often a desirable 
site for drug delivery in cutaneous conditions. In open 
wounds where the wound bed is exposed, direct delivery 
of antibodies and other biologicals to dermal tissue or 
wound edges is feasible; however, the amount of therapy 
administered largely relies on the size of the exposed area. 
The epidermis may be intact in blister and burn wounds, 
and treatment of scars also requires penetration through 
an intact epidermis. Consequently, penetrating the barriers 
of the stratum corneum and intact epidermis48 is essential 
to delivering therapies to certain types of wounds or for 
managing scarring.

Passive diffusion through the epidermis to the dermis 
occurs through one or a combination of three main routes: 
intercellular, transcellular or transappendageal (through 
dermal appendages, for example, hair follicles, pores; 
Figure 3). Intercellular diffusion involves diffusion around and 
between cells, and is the most common transport route for 
hydrophobic substances as this pathway involves dissolution 
in lipid-rich ECM. However, transport via this route is slow as 
substances must diffuse through a convoluted meshwork of 
ECM which surrounds densely-packed corneocytes — it has 
been estimated that the path of intercellular diffusion is up to 
20 times longer than the thickness of the stratum corneum49. 
Transcellular diffusion that occurs through cells is the most 
direct route to the dermis which is more commonly exploited 
by hydrophilic substances, as they diffuse through the keratin-
rich cytosol of keratinocytes. However, these substances 
must still diffuse through the lipophilic cell membrane and 
some ECM, and thus substances effectively transported via 
the transcellular route are ideally of low molecular weight 
(<600 Da) and have hydrophilic and hydrophobic regions50. 
While the transappendageal route allows rapid diffusion 
of hydrophilic molecules, this method is dependent on the 
number of pores which comprise under 0.1% of total skin 
surface, thus transappendageal diffusion is not likely to 
facilitate delivery of proteins in therapeutic doses49.

Therapeutic antibodies are poorly suited to passive diffusion 
as they are too hydrophilic for intercellular diffusion, too 
large for transcellular diffusion and require higher doses than 

Figure 3: Routes of diffusion through the epidermis 
Substances applied on intact skin may reach the dermis 
through three main routes. (A) Non-polar substances commonly 
diffuse through the intercellular route via dissolution in lipid-
rich ECM. (B) The most efficient transport into the dermis 
occurs through transappendageal absorption through pores 
associated with sweat glands, hair follicles and oil glands. 
However, appendages represent a very small percentage of skin 
surface area and this reduces the rate of drug penetration. (C) 
The transcellular pathway through corneocytes represents the 
shortest distance from the skin surface to the dermis; however, 
only substances able to diffuse through polar and non-polar 
environments to efficiently diffuse this way. 
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can be delivered through transappendageal diffusion alone. 
Antibodies are also prone to aggregation and denaturation in 
hydrophobic solvents which reduces their function. However, 
recent advances in pharmacological methods to penetrate 
the stratum corneum may provide the solution for topical 
antibody administration to skin.

CHEMICAL PENETRATION ENHANCERS
Effective delivery of therapeutic antibodies to intact skin is 
reliant on the use of penetration enhancer (PE) strategies, 
which aim to reversibly disrupt the structure of the stratum 
corneum51. However, lipophilic PEs may impact the 
stability of antibodies and cause protein aggregation and 
denaturation51,52. Thus, an ideal chemical PE strategy would 
exhibit enough hydrophobicity to penetrate the stratum 
corneum, while protecting protein-based antibodies from 
denaturation14,53.

Terpene-based PEs function by associating with lipid ECM 
and increasing the fluidity of this phase. While it has been 
demonstrated terpene-based PEs with low lipophilicity may 
stabilise protein drugs, this effect may be dependent on the 
physiochemical characteristics of the protein51 and further 
studies are required to determine if terpene PEs are suitable 
for antibody delivery.

Surfactants have the ability to solubilise hydrophilic molecules 
in a hydrophobic phase and have successfully been used for 
delivery of drugs such as insulin54 with no appreciable loss 
of activity. However, effective doses of surfactants have 
been demonstrated to cause skin irritation55, thus it is likely 
surfactants must be combined with another PEs to provide 
effective delivery and protein stability with reduced irritation56.

CELL-PENETRATING PEPTIDES
Peptide-based PEs are of particular interest for the delivery of 
proteins to tissues, and recent studies have focused on topical 
application57,58 which may reduce toxicity compared to chemical 
PEs. Peptide PEs are short amino acid sequences which enter 
cells without the use of specific receptors or damaging the cell 
membrane59 and are able to cross the stratum corneum. The 
mechanism by which these peptides enter cells is not well 
understood; however, endocytosis, keratin interaction and 
membrane pore formation have been proposed as potential 
mechanisms60. Peptide PEs have been used successfully to 
topically deliver proteins such as elastin61, fluorescein62 and 
anti-VEGF antibody63 in preclinical studies and topical cell-
penetrating peptides are in clinical development for delivery of 
botulinum toxin64, anti-scarring agents65 and anti-inflammatory 
cyclosporin A66. While topical skin delivery of antibodies using 
peptide PEs has not been realised in the clinic, this technology 
provides clear opportunities for well-tolerated topical antibody 
administration.

PHYSICAL PENETRATION ENHANCERS
Physical methods to disrupt the epithelial barrier use 
the application of energy to form holes through which 

therapeutics can enter. In most cases, these methods are 
used prior to the topical application of aqueous, cream 
or gel drug formulation; thus formulating antibodies for 
application using physical PEs may be significantly easier 
than with chemical-based PEs which involve components 
that impact protein stability. Some of the most successful 
physical disruption methods for the delivery of proteins into 
skin include ultrasound, iontophoresis, electroporation and 
microneedling67.

Ultrasound induces transient permeability in the stratum 
corneum through the formation of small bubbles in the 
targeted tissue, which allow fluids to pass through as they 
collapse68. This method has successfully been used to 
deliver molecules up to a size of ~50 kDa, which may make it 
suitable for the delivery of antibody fragments69,70. Ultrasound 
delivery is capable of delivering molecules to subcutaneous 
structures such as joint cartilage71 and transdermally for 
systemic absorption70. Consequently, antibody fragment 
delivery by ultrasound may be suited to the treatment 
of deep or tunnelling pressure ulcers or abscesses, or 
thickened scar tissue.

Transdermal iontophoresis functions by applying charge 
to drug molecules and applying an external charge to 
drive molecules through the stratum corneum72. It has 
been adopted clinically for dermal delivery of anti-scarring 
hormones73, local anaesthesia74 and insulin75. While delivery 
of larger proteins has been trialled in some preclinical 
studies76 it is unlikely that proteins larger than 10 kDa could be 
delivered, and delivery of only very small antibody fragments 
may be achievable using this method. Depth of penetration 
of proteins using iontophoresis is generally under 150 µm77; 
thus this method is most suitable for delivery of antibody 
fragments to scars or for the treatment of inflammatory skin 
conditions, rather than deeper tissue lesions.

Electroporation methods apply high-voltage pulses across 
the skin to perturb the barrier and cause transient pores 
to form. Electroporation is currently used in the clinic for 
delivery of DNA and small molecules into tissues for cancer 
therapy78 and vaccination79 and has successfully delivered 
peptides and small proteins in preclinical studies80,81. While 
high voltages are required for transdermal protein delivery, 
dermal delivery may require lower voltages, which may 
reduce patient discomfort associated with the procedure. 
Electroporation has also been used preclinically to assist with 
cosmetic skin regeneration82 and scar resolution83, thus this 
method may have additional benefits for managing scarring 
following trauma or burns.

Microneedles are thin micro-scale projections which can 
pierce the skin to access structures below the stratum 
corneum. Microneedles can be used either to pretreat the 
skin to improve drug penetrance or deliver drugs directly 
into the skin, either via hollow bore needles for drug infusion 
or needle tips coated with or comprised of dissolvable 
drug formulation84,85. Microneedling is considered painless 
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as the needles do not stimulate nerves within the dermis, 
and pores formed by microneedling are within micron 
range and thus close rapidly (generally within 12 hours)86. 
Microneedle pretreatment has improved the penetration of 
peptides87, anti-cancer agents88 and anti-scarring agents89 
and seems amenable to the application of large biologics 
such as antibodies90. Microneedling itself has been shown 
to initiate healing responses in skin which can reduce 
scars and thus may serve an additional adjuvant-effect of 
stimulating wound healing pathways91. However, the use 
of microneedles as skin permeabilisation agents for topical 
antibody treatment may be limited by the longevity of pores 
formed67. As microneedles form larger pores than other 
physical skin penetration methods, this method is unlikely 
to be useful in conditions where epidermal layers are poorly 
adhered, such as blistering conditions. However, microneedle 
delivery may be particularly useful for delivering therapeutic 
quantities of antibodies to surgical wound edges or tissue 
surrounding chronic wounds, and it had been postulated 
that microneedles may also be a convenient method for 
antimicrobial delivery to infected wounds92.

Recent research efforts have focused on developing coated 
or dissolvable microneedles for the direct delivery of 
antibodies through application of a microneedle patch. The 
challenge of this delivery method lies in using fabrication 
methods amenable to maintaining the stability of the 
antibody — antibodies must be desiccated or solidified 
to form dissolvable microneedles, which may promote 
aggregation93. Selection of a compatible microneedle matrix 
is also crucial to achieving protein stability and ensuring 
antibodies can disperse into solution. A preclinical study 
recently demonstrated dissolvable hyalruonic acid-based 
microneedles can deliver anti-PD1 antibody transdermally to 
subcutaneous tumours94,95. Clinically, microneedle delivery 
has been trialled for influenza vaccination and shown to 
be safe and effective, with few adverse effects at the site96. 
As microneedle delivery relies on local diffusion from the 
puncture site, it is most suited to areas where the epidermal 
barrier is intact, including minor burns, scars or intact 
wound edges and would not be suitable for blisters. While 
challenges in stability of formulation still exist, microneedles 
may represent an effective method for dermal delivery of 
therapeutic antibodies.

CONCLUSION
Poorly healing wounds remain a significant healthcare 
burden, and antibody therapeutics may fill a clinical niche in 
treating chronic, non-healing wounds or scars. Local antibody 
administration has many benefits over systemic methods, 
including reduced therapeutic cost, higher drug availability 
at the site and reduced adverse effects associated with 
local administration. However, dermal delivery of antibodies 
remains to be realised within the clinic due to the delicate 
nature of antibody proteins and the formidable barrier of the 
stratum corneum. Despite these challenges, several new 
technologies or combinations of these technologies have the 

potential to render antibody therapeutics a viable treatment 
option for wound healing.
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