
Wound Practice and Research 16

Christopher T Turner PhD 
University of South Australia, Mawson Institute, 
Regenerative Medicine, SA, Australia
Steven JP McInnes PhD 
University of South Australia, Mawson Institute, ARC 
Centre of Excellence in Convergent Bio-Nano Science 
and Technology, SA, Australia
Allison J Cowin * PhD 
University of South Australia, Mawson 
Institute, Regenerative Medicine, 
Room M1-08D, M Building, 
SA 5095, Australia 
Tel: +618 8302 5018 
Fax: +618 8302 5639 
Email: allison.cowin@unisa.edu.au
*Corresponding author

Therapeutic antibodies for improved 
wound healing
Turner CT, McInnes SJP & Cowin AJ

ABSTRACT
Therapeutic monoclonal antibodies (mAbs) are the fastest growing area of drug development, with an increasing number of diseases, including 
rheumatoid arthritis, multiple sclerosis and various forms of cancer, now amenable to treatment. Therapeutic mAbs bind to proteins or cells that 
are involved in the development of disease, impairing their ability to further contribute to the pathology. Currently, the treatment of acute and 
chronic wounds is an area of unmet clinical need. There are a number of proteins and cell types that are detrimental to wound healing and are 
up-regulated in the wound environment, especially in chronic wounds, with a reduction expected to improve healing outcomes. Therapeutic 
mAbs may therefore potentially provide a valuable new tool for wound treatment. This review explores the application of mAb therapies in 
wound healing.

Keywords: Wound healing, therapeutic antibodies.

keloid or hypertrophic scarring. Chronic wounds are a significant 
burden on health care systems and the community, costing the 
Australian health system over A$2.6 billion dollars per year3. 
Therefore, decreasing the scarring associated with acute wounds and 
improving the healing outcomes for chronic wounds is critical.

Impaired healing involves alterations in the sensitive balance between 
the stimulation and inhibition of mediators during all stages of 
wound repair4. Most non-healing wounds are continually in a state 
of chronic inflammation5. This results in subsequent tissue responses 
that are aggravated by the hostile wound microenvironment4. The 
inflammatory response throughout impaired healing is caused 
by aberrations in the presence of various leukocyte subsets6 and 
altered levels of cytokines (small cell signalling proteins) in the 
wound area7. These cytokines directly affect the remodelling process 
by mediating the action of proteolytic enzymes, including matrix 
metalloproteinases (MMPs)8, and tissue inhibitors of MMPs (TIMPs)9. 
Myofibroblast cells, which typically are removed from the granulation 
tissue following wound closure, can also persist in chronic wounds; 
contributing to fibrosis and excessive scarring8.

THERAPEUTIC MONOCLONAL ANTIBODIES 
(mAbs)
Therapeutic mAbs are mono-specific antibodies targeted to proteins 
that are elevated in various diseases (Figure 1). Binding to these mAbs 
impairs the proteins’ contribution to the disease state which, in turn, 
leads to improved clinical outcomes. The greatest advantage of mAbs 
is their ability to bind with high specificity, providing direct targeting 
only to the site/s of pathology.

The most common method to develop mAbs involves immunising 
mice with the target protein (antigen) of interest (Figure 2)10. When 
mice develop a sufficient immune response, the animal is humanely 
killed, the spleen is harvested and the cells are isolated and grown in 

INTRODUCTION
Wound healing is a process that is both dynamic and complex. The 
wound healing process involves the restoration of the cellular and 
tissue layers of the dermis and other soft tissue following an injury. 
Normal wound healing follows three distinct phases: inflammation, 
proliferation and remodelling. This healing process results in the 
replacement of regular skin structures with only a small amount of 
fibroblastic, mediated scar tissue. However, scars from acute wounds 
only retain approximately 80% tensile strength, when compared 
to healthy tissue1. Scarring can also be associated with functional 
impairment, such as reduced mobility, post-burn contractures and 
may be cosmetically unappealing2.

In some cases there is a failure in the wound healing process, which 
leads to delayed healing, non-healing wounds, wound recurrence, 
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Figure 1: The structural elements of IgG, the most common mAb structure. 
IgGs are composed of two heavy chains (HC) two light chains (LC). The 
complementary determining region (CDR) of the variable fragment (Fv, 
blue) is responsible for binding to the target protein, which is either a 
protein involved in the development of pathology or a protein located 
on the surface of a target cell (i.e. cancer cell). The constant region (light 
brown) provides the antibody with structure and contains the Fc domain, 
which binds to the Fc receptor of immune cells, allowing the target cell to 
be killed. Adapted from Turner et al., 201513

chronic lymphocytic leukaemia15. Common inflammatory diseases, 
such as rheumatoid arthritis, multiple sclerosis, psoriasis and asthma, 
can also be treated with mAb therapies16. There are also mAb 
therapies available for other disorders including virus infection and 
wet age-related macular degeneration17,18.

Therapeutic mAbs function by either neutralising the effect of the 
target protein, or by binding to cell surface proteins and triggering cell 
death (that is, cancer cells). Therapeutic mAbs neutralise the protein 
either by preventing binding to downstream targets or by masking 
the active site. For example, anti-Heat shock protein 90 (Hsp90) 
mAbs have been evaluated for the treatment of invasive candidiasis19. 
Hsp90 is a molecular chaperone that functions in the folding and 
stabilisation of proteins, but also facilitates a conformational change 
that is required for fungal viability20. In vitro, Hsp90 neutralisation 

Figure 2: Production of mAbs. Mice are immunised against an antigen (the 
protein that the mAb will target) to stimulate the production of antibodies 
(a). The mouse is humanely killed, the spleen removed and individual 
splenocytes isolated (b). Each spleen cell secretes a unique antibody, one 
that no other cell can produce. These cells are co-cultured with myeloma 
cells under conditions that allow the cells to fuse together, resulting in the 
formation of a new cell type called a hybridoma (c). Following a screening 
process to identify the hybridoma that secretes the best performing mAb 
the hybridomas are cultured in large numbers to produce mAbs (d). The 
mAb can then be purified from the culture medium using chromatographic 
techniques (e)

culture. Importantly, each individual spleen cell (splenocyte) secretes 
a unique antibody, one that is different from those released from other 
splenocytes. A screening process is, therefore, required to identify 
splenocytes that secrete antibodies capable of binding strongly to the 
target protein. Once identified, these candidate cells are co-cultured 
with mouse myeloma cells under conditions that allow the cells to 
fuse together, with the resultant cells called hybridomas. This step 
is critical as it immortalises the antibody secreting cells (that is, the 
cells can theoretically be grown in culture forever), thereby providing 
an unlimited source of mAb which is purified from the cell culture 
medium.

Drawbacks of mAb therapies include the high cost due to the expense 
of drug manufacture (extensive purification is required to conform to 
good manufacturing practice) and the high dose required for efficacy 
in a number of diseases11,12. Other key factors for consideration 
when developing mAb therapies include: minimising mAb rapid 
degradation and clearance, identifying the optimal delivery route, 
maximising the drug’s absorption and distribution, and minimising 
potential side effects. Recent research into the development of 
delivery systems has focused on using nanotechnological approaches 
to impart protection to the mAb in vivo and control release rates to 
overcome these issues13.

There are currently more than 30 mAb therapies with clinical approval 
worldwide. Global sales are approaching US$40 billion per year, and 
hundreds of new mAb therapies are undergoing pre-clinical or clinical 
trials. Therapeutic mAbs are clinically approved to treat solid tumours, 
including colorectal carcinoma and squamous cell carcinoma of head/
neck14. mAbs are available to treat haematological cancer, including 
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has been reported to both increase anti-fungal activity and decrease 
resistance against antifungal agents19. Clinically approved mAbs that 
function by neutralisation include Abciximab (an inhibitor of platelet 
aggregation used to treat cardiovascular disease)21, Ranibizumab (an 
inhibitor of blood vessel growth used to treat macular degeneration)22 
and Certolizumab pegol (an inhibitor of inflammation used to treat 
Crohn’s disease)23.

Effector functions are responsible for cell death (cytotoxicity). Three 
types of effector functions lead to cytotoxicity: complement activation, 
antibody-dependent cellular cytotoxicity (ADCC) and direct 
apoptosis (Figure 3)24. To induce complement activation, the mAb 
interacts with soluble blood protein components of the complement 
system25. This triggers the complement cascade and eventually leads 

to cell death26. ADCC is induced when the FcγRIII receptor located 
on the surface of predominantly B-cells (an important type of 
immune cell), including monocytes, macrophages, natural killer cells 
and neutrophils, is bound to the Fc region of the mAb27, stimulating 
the release of cytotoxic molecules, including perforin and granzymes, 
which enter the target cell to trigger apoptosis. Antibody binding 
can also induce direct apoptosis through intracellular Ca2+ depletion, 
which in turn activates plasma membrane Ca2+ channels28. An influx 
of Ca2+ ions triggers intracellular apoptotic signalling pathways and 
cleaves caspase and poly (ADP-ri-bose) polymerase29.

Cell death can also be induced by conjugating the therapeutic mAb 
to cytotoxic payloads, including toxins and radioactive elements. 
Toxins conjugated to mAbs include maytansine, calicheamycin and 
auristatin30. Cytotoxic drugs and radioactive elements are typically 
used to treat cancer and target rapidly proliferating cells31. Toxic drugs 
disrupt different aspects of cell proliferation, including cell division 
and the repair, replication and translation of DNA30. Brentuximab 
vedotin, a mAb developed to treat haematologic malignancies, is 
conjugated to an anti-microtubule agent, monomethyl auristatin E 
(MMAE). The infused mAb binds to the surface of the target cancer 
cells (anti-CD30 protein), where Brentuximab vedotin is rapidly 
internalised and transported to lysosomes32. This leads to the release 
of MMAE, which then binds to tubulin, arresting the cell cycle and 
inducing programmed cell death.

mAbs provide a powerful therapeutic tool to interfere with proteins 
or cells involved in specific disease states. mAbs can be designed 
to target inflammatory cells and myofibroblasts, both up-regulated 
in chronic wounds, and proteins linked to delayed wound healing 
outcomes, including pro-inflammatory cytokines and MMPs. Hence, 
mAb therapy may soon prove to be a suitable treatment for the 
management of acute and chronic wounds.

POTENTIAL mAb TARGETS FOR WOUND 
TREATMENT
Transforming growth factor-β
The cytokine, transforming growth factor-β (TGF-β), is associated 
with multiple roles in wound healing. There are three isoforms 
of TGF-β (denoted as TGF-β1, TGF-β2 and TGF-β3), which are 
60–80% homologous. However, each form is responsible for different 
biological functions; mediating their effects through either Smad33 or 
Smad-independent pathways34.

TGF-β1, the most common TGF-β in wounds35, is up-regulated 
following injury and contributes to the recruitment of macrophages 
and fibroblasts into the wound area, the stimulation of collagen 
production, induction of angiogenesis, down regulation of proteinase 
activity, increased metalloproteinase inhibitor activity and induction 
of a myofibroblast phenotype33. TGF-β1 inhibits the breakdown of 
the extracellular matrix (ECM)36 and regulates ECM-cell interactions 
through integrin receptors37. Importantly, TGF-β1 is also implicated 
in excessive scar formation and excessive disordered collagen 
deposition38. A number of fibrotic diseases, including scleroderma, 
glomerulonephritis, pulmonary fibrosis, liver cirrhosis, proliferative 
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Figure 3: mAb neutralisation of proteins involved in chronic wound 
pathology. Schematic representation of a wound containing a protein 
(i.e. TGF-β, Flii or IL-6) that is up-regulated in chronic compared to 
acute wounds. This protein (red circle) can be neutralised (x) through the 
administration of therapeutic mAbs (Y), which bind to target protein and 
prevent their further involvement in the disease process, thereby leading to 
effective wound healing



Volume 23 Number 1 – March 201519

vitreoretinopathy and postoperative peritoneal adhesions, are 
associated with an increase in TGF-β1

39.

The neutralisation of TGF-β1 (and also TGF-β2 and TGF-β3) with 
antibodies has been evaluated as a strategy to help reduce scar 
formation and fibrosis in a number of acute wound healing models. 
For example, dermal wounds in adult rats treated with anti-TGF-β 
antibodies prevented scar formation40. There was a reduction in 
macrophages, monocytes and blood vessels within the wounds of 
treated rats and a decrease in the deposition of both collagen and 
fibronectin. Anti-TGF-β antibody-treated mice also displayed the 
same tensile strength as control mice. Later studies confirmed that 
combined TGF-β1/TGF-β2 neutralisation could reduce scarring, with 
decreased inflammatory and angiogenic responses in a mouse dermal 
wound model, as well as reduced ECM deposition, without altering 
the tensile strength of the wound39. Improved wound healing in 
response to TGF-β antibody treatment has since been observed in 
various models including; rabbit eye wounding41,42, rabbit flexor 
tendon wounds43, mouse glaucoma surgery42, mouse plastic surgery44, 
rat nerve45 and porcine skin wounds46.

TGF-β neutralisation has also been evaluated in a chronic wound 
healing model (that is, hypertrophic scarring). Rabbit ear wounds 
treated with a generalised mAb that targeted all three TGF-β isoforms 

demonstrated a reduction in scar hypertrophy38. However, efficacy 
was only observed when antibody treatment was delayed until after 
epithelialisation was completed, indicating that TGF-β (at least at 
early time points) is a necessary component in the wound healing 
cascade.

Tumour necrosis factor-α

The pro-inflammatory cytokine, tumour necrosis factor-α (TNF-
α), mediates the activation, proliferation, or apoptotic death of 
cells47. TNF-α has been implicated in a number of inflammatory 
diseases, including chronic venous disease48. The level of TNF-α was 
significantly higher in wound fluid from biopsies of non-healing 
venous ulcers than healing ulcers49. Neutralisation of TNF-α was, 
therefore, predicted to alleviate the severity of inflammation in 
chronic wounds.

The anti-TNF-α mAbs, Infliximab, Adalimumab, Certolizumab 
pegol, Golimumab and Etanercept, have gained clinical approval for 
either rheumatoid arthritis or psoriasis treatment. The neutralisation 
of TNF-α induces the formation of regulatory macrophages with 
immunosuppressive properties50, which then inhibit the proliferation 
of activated T-cells and trigger anti-inflammatory cytokine release51. 
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Etanercept has been evaluated as a therapy for chronic wounds, 
and was found to neutralise TNF-α binding by up to 80%, reducing 
the cytotoxic effects of chronic wound fluid by approximately 30% 
on L929 fibroblasts47. A study of a rare ulcerative inflammatory 
cutaneous condition, refractory pyoderma gangrenosum ulcers, was 
performed where patients were treated with subcutaneous injections 
of Etanercept. There was an improvement in the time to heal and the 
size of the wound, whilst Etanercept caused no serious side effects and 
was well tolerated52.

Infliximab has also been evaluated in some chronic wound healing 
trials, but the efficacy was less than observed for Etanercept53, 
presumably caused by the development of anti-Infliximab antibodies54. 
To delay or even overcome the formation of anti-Infliximab antibodies, 
a periodic dose schedule or the simultaneous use of methotrexate 
and Infliximab has been investigated. However, these approaches 
only provided a marginal improvement55. mAbs containing less 
murine sequence than Infliximab (20% murine sequence), including 
Certolizumab pegol, have been developed with reduced antigenicity 
and has led to improved efficacy in rheumatoid arthritis patients56.

Interleukin-6

Interleukin-6 (IL-6), a cytokine with multiple functions, is involved in 
the regulation of both immune responses, including B-cell and T-cell 
differentiation, and the acute inflammatory response57. IL-6 binds to 
the IL-6 receptor-a (IL-6R) on the cell surface, forming a complex that 
associates with the receptor subunit gp130 and leading to activation 
of various signalling pathways58. Through this mechanism, IL-6 is 
involved in a range of physiological processes, including epidermal 
proliferation, aging, cancer, bone metabolism, thrombopoiesis, 
neuronal cell differentiation and neuroprotection59.

Aberrant IL-6 signalling is implicated in inflammatory diseases 
such as rheumatoid arthritis, Castleman’s disease and osteoporosis57. 
Delayed wound healing is a hallmark of IL-6 knockout mice, caused 
by attenuated leukocyte infiltration and delays in re-epithelialisation, 
angiogenesis and collagen deposition59. IL-6 can also modulate 
α-smooth muscle actin, a marker of myofibroblasts61. By reducing 
inflammation, anti-IL-6 mAbs may provide a therapy for chronic 
wounds.

IL-6R neutralising mAb has been evaluated in alkali burns on 
mice cornea and resulted in a reduction in the vascularised area, 
a decreased infiltration of inflammatory cells and a significant 
inhibition of inflammatory-related molecule expression62. In other 
studies, localised administration of anti-IL-6R mAb to a collagen-
induced cynomolgus monkey model of arthritis and in human 
patients after myocardial infarction both demonstrated a reduction in 
inflammation63. The anti-inflammatory effects of IL-6R neutralising 
mAbs may therefore provide a treatment option for chronic wounds.

Interleukin-1

The major cytokine, Interleukin-1 (IL-1), is involved in inflammation, 
pain and fever. There are three isoforms of IL-1 including IL-1 
receptor antagonist and IL-1α, IL-1β, which are both agonists for IL-1 

receptor binding64. IL-1β is activated through inflammasomes, innate 
immune complexes that sense intracellular danger65, or through 
specific pathogen-associated molecular patterns66. Monocytes from 
the blood of patients with various auto-inflammatory diseases were 
found to release more IL-1β than monocytes from the blood of 
healthy individuals67, and a reduction in IL-1β was predicted to reduce 
inflammation64. In clinical trials, IL-1β mAbs were demonstrated to 
normalise biochemical markers of inflammation and led to improved 
clinical outcomes68. Anti-IL-1β mAbs are now available for a range 
of auto-inflammatory diseases, including TNF receptor-associated 
periodic syndrome, cryopyrin-associated periodic syndrome and 
hyper-IgD syndrome69. As yet, no trials of IL-1 neutralisation have 
been performed for chronic wound treatment, but this therapeutic 
strategy may provide some clinical benefit.

Flightless I

Flightless I (Flii) is a highly conserved actin-remodelling protein 
and part of the gelsolin family70. Flii contains two domains; the 
leucine-rich repeat (LRR) domain, which mediates protein–protein 
interactions71-73, and the actin-binding gelsolin-like domain. Flii 
is proposed to link the cytoskeletal network with specific signal 
transduction pathways74.

Flii contributes to the regulation of cellular migration and proliferation75, 
cell division76, inflammatory cytokine production77, toll-like receptor 
signalling78, focal adhesion turnover73 and transcriptional regulation79. 
Flii also plays a part in mediating cellular adhesion, hemidesmosome 
structure as well as collagen deposition72,80. In a series of salient 
experiments, impaired wound healing was observed in mice over-
expressing Flii, whilst improved wound healing occurred in mice that 
had heterozygous Flii expression, when compared to controls75. This 
indicated that Flii negatively regulated wound healing.

The wound healing properties of a Flii neutralising antibody (FnAb) 
has been evaluated in acute wound models74,75,81. In murine incisional 
wounds, FnAb treatment demonstrated a significant reduction in 
wound size and an enhanced appearance, when compared to treatment 
with a non-specific control antibody75. Significant improvements in 
the healing of FnAb treated partial-thickness scald-burn injuries were 
also observed, when compared to control treatments74.

FnAb has been evaluated in a porcine model of wound healing82. 
Porcine wounds, both incisional (5 cm) and excisional (6.25 cm2), 
that were treated with FnAb at wounding and at 24 and 48 hours 
demonstrated a significant acceleration in re-epithelialisation and 
there was improve macroscopic appearance of early scars, as seen at 
day 35 post-wounding.

FnAb has also been evaluated as a therapeutic option for epidermolysis 
bullosa acquisita (EBA), a severe skin blistering disorder associated 
with structural skin and mucous membrane fragility81. EBA is 
caused by auto-immunity against type VII collagen, resulting in sub-
epidermal blistering83. The compromised healing of these blisters can 
result in infections, scarring and even the development of squamous 
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cell carcinoma, often leading to metastasis and premature mortality84. 
Repeated application of FnAb during blister development in a murine 
model of EBA led to a significant decrease in the severity of skin 
blistering and improved the healing rate. Blisters that had already 
matured showed improved healing and a restoration of skin tensile 
strength, whilst early stage blisters demonstrated reduced severity 
upon treatment with FnAb.

DISCUSSION
Disruption of the pro-inflammatory cycle has been identified as 
a therapeutic strategy to heal chronic wounds4. Here, we present 
some evidence that mAbs targeting TGF-β, TNF-α, IL-6 and IL-1β 
may contribute to improved wound healing. Neutralisation impairs 
the down-stream effects of these cytokines; ultimately dampening 
inflammation and reducing both fibrosis and vascularisation.

Cytokines perform critical roles in acute wound repair, with tight 
regulation required to stop an inappropriate wound healing response59. 
Pro-inflammatory cytokines are up-regulated only transiently, 
before returning to basal levels. The neutralisation of these pro-
inflammatory cytokines during this phase of wound healing may 
therefore have no effect or possibly impair the wound healing cascade. 
Anti-TGF-β treatment of hypertrophic scarring wounds in rabbits 
only demonstrated efficacy when treatment was delayed until after 
epithelialisation was completed38. Detrimental effects associated with 
pro-inflammatory cytokine neutralisation also include increasing the 
risk of infections58 and malignancies85. Further studies are therefore 
required to optimise mAb treatment to improve safety and efficacy.

The neutralisation of other proteins up-regulated in the wound 
environment can also lead to improved wound healing, with the 
neutralisation of Flii significantly accelerating re-epithelialisation and 
improving short-term scar appearance. The persistent inflammatory 
response in chronic wounds is associated with elevated proteolytic 
activity, eventually overwhelming the normal tissue protective 
mechanisms86,87. In one study, protease activity has been reported to be 
100-fold greater in chronic than acute wounds88. MMPs contribute to 
delayed healing by degrading growth factors89, and adhesion proteins, 
including fibronectin and vitronectin90, which prevent cell adhesion; 

a vital component of wound closure3. MMPs are therefore a possible 
target for mAb therapy. Serine proteinases, including cathepsin G, 
neutrophil elastase, and urokinase-type plasminogen activator, are 
also over-expressed in chronic wounds87,90,91. These wound proteases 
can specifically inactivate growth factors involved in wound repair, 
including vascular endothelial growth factor and platelet-derived 
growth factor92-94. The neutralisation of serine proteases may therefore 
reduce inflammation, providing a further target for mAb therapy.

The rapid degradation and clearance of therapeutic mAbs in hostile 
environments has led to an increase in the development of delivery 
systems. The key for these systems to improve clinical outcomes is 
based on the ability of these delivery systems to optimise the absorption 
and distribution whilst limiting the side effects13. Nanoparticle-based 
systems can give a controlled release profile and potentially protect 
the drug from degradation whilst shielding the patient from any 
immune responses associated with direct mAb infusion.

The aetiology of wounds varies widely, and prognosis is dependent 
on a number of biological factors. However, the relative abundance 
of various proteins, including cytokines, provides a useful indication 
as to the state of the wound. Measuring a cohort of key proteins, ones 
that are up-regulated in different wound types, has been identified as 
a strategy to individualise patient treatment95,96, and would identify 
which therapeutic mAb would be appropriate for which wound. The 
development of assays that are both rapid and cheap may also be used 
to monitor the wound, indicating when mAb treatment/s should 
commence but also be concluded.

CONCLUSION
The mAb industry is the fastest growing pharmaceutical and is 
projected to account for 50% of all new drugs approved by 201497. In 
concert with an increasing understanding of the biochemical basis of 
wound healing pathophysiology, more binding targets are likely to 
be identified. There is, therefore, anticipation that mAbs, combined 
with new delivery systems, will provide new therapeutic options for 
improved wound healing.
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