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A review on porcine burn and scar models and 
their relevance to humans

Introduction
Porcine thermal burns have been widely employed for 
examining the beneficial effects of novel burn treatments prior 
to clinical application and for understanding the mechanisms 
of burn wound healing 1, 2. The advantages of these porcine 
burns over other animal burns are well described by others, 
such as the well described close resemblance to human 
skin in structure and in wound healing. Importantly, unlike 

heterogeneous burns in humans, the burns created in 
porcine burn models are relatively consistent in depth, 
size and location; therefore the effect of manipulations and 
burn treatment on wound healing outcome can be easily 
accomplished. Furthermore, in porcine burns the subjective 
clinical assessment of wound healing and scar appearance 
can be readily compared with the histological analysis of 
biopsies, which is usually unavailable in human burns 
and scars. Nevertheless, many porcine burn models in the 
literature do not detail all elements described above. It 
should be noted that Singer and colleagues 1 have thoroughly 
characterised the burns and scars in their porcine model. 
This review focuses on these porcine burns/scars from both 
literature and our own experience and covers the most crucial 
issues in burns/scars, such as burn depth, wound infection, 
re-epithelialisation, wound contraction, and scar evaluation, 
in order to lessen the gap between experimental research and 
human burns/scars.

Burn Depth
Clinically, the depth of burns is categorised into first- 
(superficial), second- (also termed partial thickness) and 
third-degree burns (full thickness) and determines the choice 
of burn care and the outcome of burn wounds. Burns with 
first degree and superficial partial thickness are treated 
conservatively and heal without scarring, whereas burns 
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Abstract
Burns are common injuries worldwide and often heal with significant scarring when injury extends into the deep dermal layer. It 
can lead to hypertrophic scarring, scar contracture, impaired skin function, and disfigurement. Due to the heterogeneous nature 
of burns and subjective approaches in diagnosis and in outcome, many clinical studies cannot be compared and consensus can 
be hard to reach. Despite great effort, the mechanism of hypertrophic scarring is still poorly understood, partly due to the lack 
of animal models with scars similar to human hypertrophic scars. The porcine burn model is widely accepted as the best animal 
model. This article reviews porcine burn models from the literature and from our laboratory. It details the creation of burns from 
various methods, the determination of burn depth, the assessment of re-epithelialisation, and the evaluation of the subjective 
measurements of wound infection and clinical scar outcome. It describes that in our porcine model, burn of 40−50cm² with a pale 
appearance is deep dermal partial thickness, takes more than 3 weeks to completely re-epithelialise and heals with significant 
scarring that is similar to a human hypertrophic scar. It further draws attention to the relative quantitative approaches of most 
assessments conducted on our porcine burns/scars and verifies the subjective judgement of wound infection and clinical scar 
outcome. The information here not only provides essential elements for conducting porcine burn trials, but more importantly 
offers valuable knowledge for better burn care clinically and for improved clinical trials. 
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with deep dermal partial and full thickness require skin-
grafting and heal with scarring. These scars often require 
long-term scar management and repeated reconstructive 
surgery to release contractures. For this reason, well-defined 
burn depth in a porcine model is demanded. It also provides 
useful knowledge for the improvement of human burn 
assessment which is often inaccurately assessed clinically in 
mid-/deep-partial thickness burns, consequently leading to 
inappropriate burn care 3, 4.

Many types of porcine thermal burns with different depths, 
sizes, sharps and locations have been created. Most are contact 
burns that are created mainly by applying hot brass and 
aluminium blocks or similar materials 5-15, and also by using 
hot water in specifically designed devices 9, 16-18. Some are 
scald burns by directly exposing skin to hot water 14, 19-21. While 
most contact burns are created by hot devices 100°C or less, 
some are made at higher temperature 150°C−347°C 10, 12, 14, 15. 
It should be noticed that creation of contact burns using hot 
devices is relatively simpler and safer to researchers than the 
scald burns. 

It was established half a century ago that burn depth correlates 
to heat temperature and duration in pig scald models 22-24. 
Since then, the characterisation of burn depth has been further 
defined histologically where burn depth is determined by: 
the cell necrosis of hair follicles, mesenchyme and vascular 
endothelia; damaged collagen; congested blood vessels and 
thrombosis; extravasation of erythrocytes; and infiltration of 
neutrophils during the first 3 days post-burn 8, 9, 13, 16. It is well 
demonstrated that the extent of injury for different elements 
in skin tissue is not uniform. The deepest damage occurred 
in vascular endothelial cells, followed by mesenchymal cells, 
hair follicles, and collagen, in burns created by an aluminium 
bar at 50°C−90°C for 10−30s 13. While superficial burns are 
relatively stable over time 8, 16, deeper burns can progressively 
deepen until 24-72 hours post-burn 1, 8. In contact burns 
created by a hot device at 170°C, clear demarcations are 
observed in the dermis: a coagulated superficial layer; injured 
intermediate layer; and intact deeper dermal layers 9, 14. In 
contrast, a mixed pattern of intact and damaged extracellular 
matrices is seen throughout the dermis and significant 
damage is only obvious after several days in scald burns with 
80°C water 9, 14. Deep partial thickness burns sized ≥20cm² 
have been created by applying a brass block 170°C for 20s 10, 14, 
a contact apparatus 347°C for 5s 15, 25, and by exposing skin 
to 82-85°C water for 10−12s 19. Following their important 
study on porcine burn depth in relation to temperature and 
duration of exposure 13, Singer et al. uses a aluminium bar 
80°C for 20s to create mid-partial thickness burns defined 
based on the damage in hair follicles and collagen 26, 27.

Since 2004, we have established a porcine burn model in 
our laboratory 17, 28, 29. Our burn device is a bottomless Schott 
Duran bottle covered with plastic wrap at the bottom and 
filled with 300ml of water. Circular thermal burns sized 
40−50 cm² are created by applying this burn device with 92°C 
water on skin for 15s. The burns are located on the thoracic 
paravertebral region where the skin surface is flat and large 
enough to ensure perfect contact with the burn device, and 
there are either one or two burns on each side. At 92°C for 
15s, it is found that the necrosis of hair follicles deepened 
into the mid-dermal layer, but not in the deeper layer at 
day 6 post-burn 17. With this temperature and duration, we 
have conducted many porcine trials. These trials include: 
examining the effects of Vitrogro 30, first aid using cool water 
and others 31-33, and conservative surgical debridement 34 on 
burn wound healing; and investigating the safety of silver 
dressing 35, 36. 

While clinicians worldwide rely on macroscopic appearance 
to assess burn depth without histological information; most 
studies on porcine burns only detail the histological findings 
but fail to report the corresponding macroscopic appearance 
of the burns readily at hand. Most of our burns have a 
uniform “pale” appearance, developed during the burning 
process, with a rim of erythema around the burn border 
(Figure 1A, 2A). This “pale” appearance has also been 
documented on pigs by a few studies 1, 9 and is characteristic 
of deep dermal burns in humans 3, 4, 37, 38. Others have reported 
red burns 16 and burns become redder with shorter exposure 8. 
Unlike other studies where the pale burns became red at day 
3 post-burn 9 and the rim of erythema subsided within several 
minutes 1, the pale appearance and the rim of erythema were 
retained in our burns .

However, some of our porcine burns have a mixed pale 
and pink (or red) appearance (Figure 1B, 2B), which is 
noticed in burn photos of other reports 1, 8, 27. These pink or 
red areas/burns do not blanch. For pale burns, histological 
analysis of samples taken immediately after burn injury 
show necrotic epidermis, completely necrotic hair follicles 
in the mid-dermis, and necrosis extending even into the 
deep dermis in some areas (Figure 1A). The capillaries are 
congested and there is no extravasation of erythrocytes. Two 
days post-burn, neutrophils are seen between the collagen 
bundles in the dermis and within the walls of small dermal 
vessels. For pink burns, histological analysis shows thermal 
damage to the epidermis and at least partial thermal injury to 
hair follicles on samples taken immediately after burn injury. 
However, some of the hair follicles in the middle dermis 
maintain their structure and are not damaged (Figure 1B). 
The capillaries in these burns are more dilated and congested 
in the superficial and mid dermis, with extravasation of 
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red blood cells. During the following two days, there is 
less inflammation, as indicated by less neutrophils in the 
dermis, compared to the pale burns. Therefore, burns with a 
pale appearance are considered to be deep partial thickness 
burns. The pale burns/areas re-epithelialise slowly and heal 
with significantly scarring (Figure 2A), whereas the pink 
burns/areas re-epithelialise quickly and heal with less or no 
scarring (pink area of burn in Figure 2B) 29, 31. Only burns with 
a pale apperance are included in reports where the effect of 
debridement, anatomic location, different dressings on burn 
wound healing were evaluated 34, 39, 40.

Re-epithelialisation
In human burns, re-epithelialisation is the major clinical 
assessment during burn wound healing and a delayed wound 
healing time is a significant risk factor for hypertrophic 
scarring 41-45. Re-epithelialisation is also used to determine the 
choice of burn care in indeterminate depth burns where these 
burns receive conservative burn care initially and would only 
be grafted later if they had not spontaneously healed within 
3 weeks. It is commonly assessed subjectively through clinical 
observation of wounds by experienced burn clinicians.

Re-epithelialisation is also the most common assessment 
in many porcine burn trials by both macroscopic and 
microscopic approaches. The non-invasive macroscopic 
approach, same as in human burns, involves the clinical 
observation of burns 9, 11, 16, 19 followed by mapping the 
re-epithelialised areas on a transparent film after gently 
lifting detachable eschar 46. However, it is considered to be 
difficult to assess, mainly due to the thick eschar over the 
wound 1, 27. Recently, Singer et al. demonstrated a non-invasive 
approach, optical coherence tomography (OCT), to reliably 
assess re-epithelialisation on a porcine excisional model 47. 
The invasive macroscopic approach is to macroscopically 
examine whether the epidermal sheet is defect or intact after 
excision of wound tissue and separating epidermis from 
dermis 5, 48, 49. Microscopic (or histological) assessment of 

Wang X & Kimble RM 	 A review on porcine burn and scar models and their relevance to humans

Figure 1. The macroscopic and microscopic appearance of burns 
immediately after burn injury.

A. A uniform pale burn. A biopsy was taken from the area indicated 
by the yellow circle and stained with H&E shown at low and high 
magnification. B. A mixed pale and pink burn. A biopsy was taken 
from the pink area indicated by the yellow circle and stained with 
H&E shown at low and high magnification.

Figure 2. The healing of burn wounds over a 5-week period post-
burn 

A. The wound healing of a pale burn and the macroscopic 
appearance of this burn wound over a 5-week period post-burn. 
B. The wound healing of a burn with a mixed pale and pink 
appearance and the macroscopic appearances of this burn wound 
over a 5-week period post-burn. Note that the greenish appearances 
of wounds in some of these photos were caused by cleaning wounds 
with green-dyed gauze.
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re-epithelialisation is the most common approach and has 
been used in many studies 9-12, 15, 16, 25, 27. 

Most of our porcine trials have a duration of 6 weeks post-
burn and re-epithelialisation is assessed at every dressing 
change either once or twice/week for 6-weeks. Despite 
being less-accepted compared to histological analysis, the 
non-invasive macroscopic approach was chosen in our 
porcine trials. It is conducted by thorough cleaning of 
wounds, careful examination of wound surface, tracing the 
re-epithelialised area on VisitrakTM sheets (Smith & Nephew) 
and then obtaining the absolute value of this area calculated 
using a Visitrak device. The eschar is softened with saline 
gauze and then is gently removed without the risk of damage 
to the wound surface and re-epithelialisation can then be 
easily judged. Nevertheless, wound photographs must also 
be taken. On wound photographs, in most cases it is easy 
to judge re-epithelialisation (day 13 in Figure 2A, Figure 
3A), but it can be less certain when mixed re-epithelialised 
and non-re-epithelialised are doted throughout the wound 
(Figure 3B&C). The obvious advantage of this approach is 
that like clinical situations, burn wound healing takes its 
natural course without the pathological disruption caused 
by biopsying. Most importantly, this approach is reliable and 
accurate, allowing one to assess the wound as a whole instead 
of histological analysis where only biopsying sites and ≈5µm 
thick sections of these biopsies are examined. This approach 
is particular useful when burns are relative large. In addition, 
the information derived from this approach can be easily 
transferred to clinical situations.

In most of our porcine trials, re-epithelialisation is calculated 
as % of wound surface for each wound during the 6 weeks 
post-burn. In burns with a pale appearance, re-epithelialisation 
only occurs after the first week and usually starts around the 
border area, with the rest of wound afterward. In a study 
with 72 burns, it took a mean of 19.8 days (2.8 weeks) to 
reach 50% re-epithelialisation, and 23.6 days (3.4 weeks) to 
reach 80% re-epithelialisation 28. Close analysis reveals that 
the time to re-epithelialisation is highly correlated to each 
of the clinical and histological scar assessments. The best 
correlations of re-epithelialisation are found to be with clinical 
cosmetic outcomes and histological scar tissue thickness. 
This demonstrates that our re-epithelialisation data could 
reliably predict the outcome of burn wound healing clinically 
and histologically. This further supports the observation in 
human burn victims that delayed wound healing time is a 
significant risk factor for hypertrophic scarring 41-45. 

Burn Wound Colonisation and Infection
Burn wound infection/sepsis is a serious complication of 
thermal injury and remains a major threat to human victims 

with large burns (>20% TBSA) 50-52. It is also a main cause 
for delayed wound healing that leads to a higher risk of 
hypertrophic scarring. For these two reasons, preventing 
wound infection remains one of the major focuses in burn 
care, and regular burn wound inspection by a burn surgeon 
is mandatory 52. Burn wound infection is categorised into 
wound colonisation, wound infection, invasive infection, cellulitis 
and necrotising infection. The assessment of wound infection 
includes both clinical and laboratory examinations. Clinically, 
the diagnosis of wound infection relies mostly on the clinical 
symptoms and examination of burn wounds. Quantitative 
biopsy and swab cultures are considered to be not reliable. 
Burn tissue histological examination confirms diagnosis but 
is impractical and rarely used. 

Wound colonisation/infection is one of the major assessment 
categories in our porcine burn trials and is judged by clinical 
observation of the burn wounds at every dressing change. 
This includes the amount of exudate, the smell of wound, 
presence of pus and changes in wound appearance as well 
as corresponding systemic symptoms. Wound colonisation 
scores are given from 0-3 where 0 = no colonisation, 1 = mild 
colonisation with a mild exudate smell and no obvious pus, 
2 = medium colonisation with a moderate exudate smell and 
sign of pus, 3 = severe colonisation with a severe smelling 
wound and presence of pus and change of colour 53. In all our 
porcine burns, only wound colonisation and wound infection 
are observed. Invasive infection, cellulitis, necrosis and 
related systemic symptoms are never noted. In our porcine 
burns, signs of wound colonisation/infection are observed 
in some as early as week 1, but most by week 2 post-burn 
when burns begin to re-epithelialise. In a study with 304 
porcine burns 53, we found that 19.4% wounds (59/304) were 
recorded having ≥2 colonization scores at least once over a 
6-week period and most of wounds had no sign of wound 
colonisation. Further evaluation was conducted through 
Gram staining of 228 burn biopsies, demonstrating that 
clinical observation of our burn wound infection is consistent 
with bacterial presence in viable tissue 53. This result indicates 
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Figure 3. The clinical assessment of burn wound re-epithelialisation 
on photographs.

The re-epithelialisation can be easily assessed in wound photograph 
A but is less certain in wound photographs B & C.
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that in our porcine burns wound colonisation / infection 
scores are found to significantly correlate with histological 
scar tissue thickness 39. The clinical examination of the entire 
burn wound surface, though subjective, is the most useful 
and reliable method for diagnosing burn wound infection. 

Burn Wound Contraction
Severe scar contracture associated with hypertrophic scarring 
is often the outcome of wound healing from deep burns, and 
is the major issue for human burn survivors, particularly for 
paediatric victims 41, 54, 55. ��Currently, the best approach to 
prevent scar contracture clinically is the early application of 
pressure garment, but the results are still far from satisfactory. 
Scar contracture is generally accepted to be contributed by 
the presence of elevated numbers of myofibroblasts in scar 
tissue that express α-smooth muscle actin (α-SMA), a factor 
usually only found in the vessel wall and errector pili muscle 
in normal skin 55-57. Myofibroblasts were initially identified 
in granulation tissue of healing wounds three decades ago 58, 
and since has been successfully characterised and found to be 
present in all contracted fibrotic tissue 56, 57, 59, 60. 

In both human and animal cutanteous scars, the expression 
of α-SMA has been extensively investigated. Human scars 

from paediatric and adult patients were either hypertrophic, 
non-hypertrophic, or keloid 61-67. In human burn wounds 
and scars, myofibroblasts are the dominant cell type in 
granulation tissue, and α-SMA is more likely to be present 
or at higher levels in hypertrophic scars than in mature scars 
and is predominantly localised in the nodular structures and 
in the more densely populated cell regions in hypertrophic 
scars 63, 65, 68. Both pressure therapy and interferon significantly 
reduce α-SMA expression in human burn scars 63, 65. In animal 
models, α-SMA expression has been investigated during 
wound healing and in scars, with most using small animal 
excisional models 68-74. The expression of α-SMA starts during 
the first week, peaks in the second week and then disappears. 
In mice and sheep burns, α-SMA expression is found to 
correlate with burn wound healing outcome 75, 76. 

In our porcine burn model, wound size is measured by tracing 
the wound on a Visitrak sheet at every dressing change and 
absolute area value is then obtained. The results in most of 
our reports are scar sizes at week 6 post-burn 28, 34, 39, 40. In 
burns with a pale appearance, all scars fail to grow normally 
during the 6-week period when normal skin expands rapidly 
to 158% of its original surface area. Most scars became smaller 
and severely contracted with a mean of 74.5% of the original 
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burn size in a study with 72 burns 28. Preliminary multivariate 
principle components analysis shows that α-SMA expression is 
highly associated with wound contraction, re-epithelialisation 
and scar thickness. Higher levels of α-SMA are found in more 
contracted, thicker scars with delayed wound closure. To 
our knowledge, this is the first supporting evidence for 
the association of α-SMA expression with in vivo wound 
contraction, the thickness of scars and re-epithelialisation on 
large burns, on a porcine model.

Clinical Scar Appearance
Hypertrophic scars in human burn victims present as 
raised, erythematous, pruritic and inelastic masses of tissue 
which do not have normal skin architecture/function and 
are disfiguring 41, 54, 55. Clinically, to both burn victims and 
their carers, scar appearance and function are the greatest 
concerns. Minimal scar tissue and better cosmetic outcomes 
are the ultimate goals for all burn clinicians and clinical trials 
of potential new burn treatments, which rely on the proper 
evaluation of these scars. Clinical evaluation on human scars 
has been described by many 77-84, and is well correlated with 
histological scar analyses. This clinical evaluation includes 
scar vascularity, pigmentation, pliability, height, and surface 
roughness assessed subjectively and objectively. 

In porcine wound healing and scars, though many studies 
present the photographs of their porcine scars and some 
provide brief descriptions of these scar appearances, only 
a few have attempted to systematically rate these scars 
in the same manner as in human scars. Tennyson et al. 6 
employed a visual analogue scale and a clinical assessment 
scale similar to the human scar scale developed by Beausang 
et al 77 that includes scar colour, surface shininess, contour, 
distortion, and texture. Glatter et al 85 used the Vancouver 
Scar Scale 83, which includes scar pigmentation, vascularity, 
pliability and height. However, the clinical scar outcome from 
these two studies on porcine scars was poorly correlated with 
histological scar outcome.

In our porcine burn scars, a clinical scar scale has been 
established 28. It is based on human scar scales 77-84, the 
difference between human and porcine scars, and the time of 
assessment (at week 6 post-burn). Most of our porcine burn 
scars appear severely contracted with red/purple colouration, 
but are not pigmented. Moreover, scar elevation is usually 
gradual without sharp elevation at the edges and mostly does 
not exceed more than 5mm above normal surrounding skin. 
Our porcine burn scars can then be described as elevated, 
erythematous, and contracted masses of tissue. Therefore, our 
clinical scar scale is adjusted to effectively assess our porcine 
burn scars from best to worst outcome at week 6 post-burn 
and includes scar height, colour, hair and general cosmetic 

outcome. Wound contraction is not included in this scale and 
is obtained quantitatively from wound size. The hair is added 
in to indicate the preservation of normal skin function, and 
the scar cosmetic outcome provides a general impression of 
the scar deviating from normal skin. In this porcine clinical 
scar scale, the scar is scored between -1− 5 (-1 only for 
depressed scar height) with normal skin as 0 and the worst 
scar as 5 28. To standardise this assessment and minimize the 
bias from assessors, a set of porcine scars representing each 
grade of scar cosmetic outcomes are selected. A set of scar 
colours from porcine burn scars are also selected as reference 
colours to represent normal porcine skin colour to dark 
purple porcine scar colour and this colour bar is also included 
in the scar photographs to minimize influence of lighting 
in later experiments. Although requisite scar photographs 
undoubtedly offer many advantages, the assessment of scars 
is easier in vivo than on photos, particularly with porcine scar 
height and hair assessment.

This clinical scar assessment is found to highly correlate 
with scar histology, wound size, and re-epithelialisation 
data 28. More severe scars are clinically characterised by 
darker purple colouration, more elevation, no presence of 
hair, histologically by thicker scar tissue, thinner remaining 
normal dermis, are more likely to have worse contraction, 
and slower re-epithelialisation. This demonstrates that our 
clinical scar scale is a reliable and independent tool for 
assessing porcine burn outcome and truthfully reflects scar 
appearance/function. Although it is subjective, the scale can 
be used to assess burn wound healing outcomes without using 
other healing and scar measuring systems. Of four clinical 
scar assessments, the scar cosmetic outcome is correlated best 
with wound healing and scar assessment, indicating that scar 
cosmetic outcome can substitute for a clinical scar scale in 
our porcine burn scars when scar colour, height and hair are 
not available. The “objectivity” of this subjective assessment 
relies on lessening subjectivity, familiarising with the scar 
scale, applying reference scars, taking quality scar photos, 
and placing reference colour bars in scar photos. More 
importantly, it proves that it is possible to establish a reliable 
clinical scar scale for porcine burn scars. Undoubtedly, 
outcomes from the clinical scar scale in porcine trials provide 
valuable information for subsequent clinical trials.

Histological Scar Assessment
Histologically, hypertrophic scars consist of masses of 
hypercellular and disorganised connective tissue under a 
thickened epidermis 41, 54, 55. Compared to uncomplicated flat 
scars, their most striking feature is the presence of rounded 
whorls of immature collagen that range from 0.5mm to 
more than 1cm in diameter. In a study with human scars, 
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a histological scar scale focusing on epidermis (related 
to restoration of rete ridges), the orientation, density and 
maturity of collagen fibres in the dermis is found to highly 
correlate to clinical scar scales 77. Histological analysis has 
predominated most porcine burn studies, although it is 
not necessary reported 6, 7, 10, 12, 16, 18, 19, 21, 26, 85, 86. This includes 
the inflammatory response, vascularisation, proliferation 
and maturation of epidermis, granulation tissue formation, 
dermal remodelling, presence of myofibroblasts, the depth of 
scarring, the growth of skin appendages, and the immuno-
histochemical analysis of a variety of molecules involved in 
wound healing and scar formation. Hoekstra et al. described 
the thickening of granulation tissue and no viable dermis in 
some area at days 35-42 following deep dermal burns sized 
45cm² inflicted by brass block 170°C for 20s 10. In full-thickness 
burns followed by skin grafting, the thickness of granulation 
tissue was found to peak at day 60 post-grafting, and then 
decreases over the next 120 days 85. In order to quantify 
the severity of burn scarring in a porcine model, Singer et 
al. designed a histolomorphologic scale incorporating all 
elements and structures in epidermis and dermis 86. This 
scale is very reliable but not highly correlated to clinical scar 
assessment.

In our porcine trials, scar biopsies are usually collected at 
week 6 post-burn, and are stained with H&E and some also 
with Masson trichrome. The histological analysis includes: the 
thickness of epidermis, organising granulation tissue (early 
scar tissue layer), and remaining normal-like dermis; the 
number of hair follicles; and the maturation and appearance 
of epidermis and dermal collagens. In burns with a pale 
appearance, scars usually have thicker epidermis and dermis 
without viable hair follicles. The thicker dermis contains a 
distinguished thicker layer of organising granulation tissue 
at the upper portion and a thin layer of normal-like dermis 
at the deeper portion. This organising granulation tissue is 
characterised by more basophilic, hypercellular, and finer/
not well organised collagen bundles and is often sharply 
demarcated from the deeper dermis where thicker collagen 
bundles are arranged in a more orderly fashion similar to 
that of normal skin. However, round nodules of collagen are 
not observed in our porcine scars at week 6 post-burn. In a 
study with 72 burn scars, the quantitative analysis reveals 
the means of thickness: epidermis = 0.1763mm, organising 
granulation tissue = 3.534mm, and remaining normal-like 
dermis = 1.072mm; compared to normal skin epidermis = 
0.083mm, and total dermis = 2.2mm 28. The thicknesses of 
these three layers, particularly organising granulation tissue, 
is significantly correlated to clinical scar outcome, wound 
contraction, and re-epithelialisation. This means that a scar 
with thicker organising granulation tissue, thicker epidermis 
and thin remaining normal-like dermis through histological 

analysis is more likely to heal from delayed wound closure, to 
appear more contracted, and unfavourable clinical outcomes. 
Individually, organising granulation tissue could represent 
histological scar assessment.

In human burn scars, foreign body giant cell reactions are 
well described and can develop from ruptured epidermal 
inclusion cysts and residual hair material left behind after 
the burn injury has destroyed the follicles 54. In our porcine 
burn scars, such micro-lesions with characteristics of a 
foreign reaction to hair shafts are also noticed 87. Moreover, 
an additional type of microscopic inflammatory foci is 
also identified. These microscopic inflammatory foci do not 
contain any irritant materials, and are composed largely 
of polymorphonuclear cells with other inflammatory cells 
including macrophages / epithelioid histiocytes / giant cells, 
and show acute on chronic inflammatory responses that have 
not been described previously in burn scars. Importantly, they 
are present at significantly lower numbers in burns surgically 
debrided than in burns which have not been debrided. It has 
not yet been reported how commonly similar lesions occur 
in human burn scars and how these lesions contribute to the 
formation of hypertrophic scars. It is currently unpredictable 
in clinical situations which burns will become hypertrophic, 
and the pathophysiology of the hypertrophic scaring is 
not completely understood 88, 89. It is clear that thorough 
cleaning/debriding of burned necrotic tissue will minimise 
the formation of microscopic inflammatory foci in scar tissue.

Conclusion
The essential elements of animal models for any human 
diseases are the abilities to represent the nature of disease 
and to properly diagnose and evaluate outcome. This is 
especially important for burns, since burn injuries possess 
many variables, such as size, depth and location, and are 
diagnosed and assessed still through heavy reliance on 
subjective clinical observation (also not quantitative) rather 
than laboratory and other specific investigations. Due to these 
reasons, many clinical and animal burns studies often cannot 
be adequately compared and cross-interpreted. Moreover, the 
lack of a suitable animal model with the features of human 
hypertrophic scars means research suffers greatly. Our 
porcine burn model reviewed here offers the closest example 
to human burn scars. Importantly, the depth and location of 
burns and most crucial aspects of wound healing and scars 
are well defined and critically evaluated. These burns are 
relatively large in size with deep partial thickness and heal 
with significantly scarring histologically and clinically similar 
to human hypertrophic scars. This model can be used not 
only for animal trials to promote evidence-based medicine, 
and provides valuable knowledge to improve subjective 
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clinical observation and clinical burn care, but also can 

uncover the mechanisms of hypertrophic scaring.
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