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Epidermolysis bullosa (EB) – diagnosis and therapy

McMillan JR, Long HA, Akiyama M, Shimizu H & Kimble RM

Classification and diagnosis of 
epidermolysis bullosa (EB)
Epidermolysis bullosa (EB) comprises a closely linked group 
of genetic diseases characterised by skin separation between 
the epidermal and dermal layers (Figure 1). EB patients 
exhibit disruption to the rivet-like hemidesmosome (HD) 
junctions that provide a continuous structural link between 
the keratinocyte intermediate filament cytoskeleton and 
the underlying basal lamina and upper dermal matrix 1. 
Disruption of important individual components involved in 
the maintenance of HD function (Figure 1) leads to loss of 
keratinocyte adhesion, the formation of epidermal weakness 
and blistering at sites of trauma 2, 3.

The current basic system of EB classification, based on 
electron microscopy blistering findings, was first devised by 
Pearson et al. in 1962 4. EB disorders can be subcategorised 
into three main subtypes by the level of epidermal separation 
– within the basal keratinocyte (EB simplex –EBS), between 
the keratinocyte and underlying basal lamina (junctional EB 
– JEB), and separation beneath the basal lamina (dystrophic 
EB – DEB) (Figure 1) 3.

EB mutations have been identified in at least 10 distinct 
genes involved in maintaining epidermal keratinocyte linkage 
to the underlying dermal connective tissue 5 (Table 1). The 
clinical severity can range from relatively mild, localised 
blistering to widespread epidermal separation and can involve 
subsequent scarring and limb deformities ultimately leading 
to premature demise. These diseases can be disfiguring and, 
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if the patient survives, there can be an increased risk of 
tumour development 6. The clinical severity often depends on 
a combination of factors – the defective gene and the critical 
role of that gene product in epidermal function; the expression 
pattern and critical function of the defective gene in non-
skin tissues; the type of mutation, with nonsense mutations 
generally leading to more severe disease and missense genetic 
defects leading to milder conditions; and the position of the 
genetic defect within or close to areas that affect critical protein 
domains 3, 7, 8. Each EB subtype causes epidermal separation 
within subtly different levels of the dermal-epidermal junction 
and is dependent on the effect of the genetic defect on the 
specific protein function, the functional importance of the 
affected gene, and specific function of the defective protein 
domain encoded by the gene.

The recently revised EB classification system takes into 
account current advances in EB 5, as well as encompassing 
findings on the latest inherited skin diseases that affect 
epidermal adhesion, including Kindler Syndrome (KS). In KS, 
genetic defects lie in FERMT1 (formerly C20orf42 or KIND1 
genes) that encode the focal adhesion junction-associated 
protein Fermitin Family Homologue 1 (FFH1, formerly 
known as kindlin-1/kindlerin). KS is included within the EB 
spectrum based on the presence of epidermal separation and 
mechanical fragility at sites of trauma 5 but as yet the protein 

McMillan JR, Long HA, Akiyama M, Shimizu H & Kimble RM	 Epidermolysis bullosa (EB) – diagnosis and therapy

Figure 1. Schematic diagram illustrating the position of key 
ultrastructural features relevant to epidermal adhesion and basal 
keratinocyte structural integrity.

Desmosomes mediate keratinocyte contact between adjacent cells 1 and 2. 
Keratin intermediate filaments comprise the main structural cytoskeletal 
components of the epidermal keratinocytes and provide a structural link to 
desmosomal (cell-cell) and hemidesmosomal (HD) (cell-matrix) junctions. 
HDs are small discrete electron-dense structures that mediate adhesion to 
the underlying basal lamina and dermal matrix. Mediating the linkage of 
keratinocytes and basal lamina to the underlying collagen fibres in the upper 
dermis are long thin semicircular loops, anchoring fibrils that comprise collagen 
VII. The level of tissue separation observed in EB subtypes is shown on the left 
side of the diagram by the red dashed lines. EB simplex splits occur within the 
basal keratinocyte cytoplasm, JEB separation between the basal keratinocyte and 
the basal lamina (basement membrane) and DEB leads to separation beneath 
the basal lamina (in the sub-lamina densa region where anchoring fibrils are 
typically observed).
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has not been shown to specifically localise to within the 
hemidesmosome cell junction, but is thought to be involved 
in epidermal keratinocyte adhesion.

Immunofluorescence antigen mapping 9 and transmission 
electron microscopy of EB freshly created blistered skin 
biopsies 10-15, when coupled with the use of specific monoclonal 
antibodies, provides the gold standard for EB diagnosis and 
helps identify the likely affected structural proteins. Figure 2 
shows a detailed ultrastructural representation of the dermal-
epidermal junction. Antigen mapping has traditionally relied 
on the staining of frozen sections from EB patient biopsies 
(harvested from recently trauma-induced blisters, never old 
lesions), with antibodies to specific basal lamina components 
– including bullous pemphigoid antigen 1, collagens IV, VII 
or XVII, laminin isoforms, and basal-specific cytokeratins – in 
order to determine the level (intraepidermal, intra-lamina 
lucida, sub-lamina densa) of epidermal separation 9.

Certain diagnostic antibodies are also useful for pinpointing 
the underlying defective genes. One of the best diagnostic 
antibodies for JEB and some forms of DEB is the 19-DEJ-1 
antibody that recognises an unknown mid-lamina lucida 
component restricted to beneath HDs designated as  
uncein 16-18. Uncein is a unique antigen that is completely 
absent in almost all subtypes of JEB. Several attempts have 
failed to determine the exact nature of this useful diagnostic 
antibody. These failures were most likely due to lack of uncein 
antigen reactivity after protein extraction. This has made 
the immunological and molecular characterisation of the 
antigen difficult. Current theory suggests that 19-DEJ-1 may 
recognise a conformational epitope related to collagens VII 
and/or XVII, laminin 332 and the a6ß4 HD integrin receptor 
(see Figure 3 for schematic representation of HD-associated 

antigens). Evidence for this hypothesis comes from a collagen 
XVII mosaic JEB-nH patient where the expression patterns of 
collagen XVII and uncein were identical on unaffected and 
affected skin sites 17. Another similar diagnostically useful 
and again a conformationally sensitive antibody is the anti-
amniotic GB3 antibody recognising the g2 chain of laminin 
332 19-21 (Figure 3).

Prenatal diagnosis (PND)

Considerable progress has recently been made in elucidating 
the molecular pathology underlying several forms of inherited 
skin diseases. Clinically, these advances have led to better 
genetic counselling in many disorders and to the development 
of DNA-based prenatal diagnosis. One of the most immediate 
benefits has been the development of DNA-based prenatal 
diagnosis in pregnancies at risk for a recurrence of EB. EB 
prenatal testing has progressed from mid-trimester foetal 
skin biopsies 22, 23 to first trimester chorionic villus sampling 
in a much broader range of genodermatoses. Unfortunately, 
both foetal skin biopsy and chorionic villus sampling are 
invasive and therefore not completely risk-free and are 
therefore only generally available for the two most severely 
affected EB subtypes, JEB and DEB 13. A further drawback of 
molecular testing using chorionic villus sampling is the need 
to know the precise genetic defect from an affected proband. 
In the absence of such molecular information, a foetal skin 
biopsy test remains the best alternative 22, 24-26.

Advances in in vitro fertilisation protocols and embryo 
manipulation technology have led to the feasibility of even 
earlier prenatal diagnosis through pre-implantation genetic 
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Table 1. Classification of EB and its candidate genes.

Main EB type/subtype	 Candidate gene (encoded protein)

EB simplex (EBS) (intra-epidermal separation)

Localised EBS (formerly Weber-Cockayne)	 KRT5, KRT14 (keratin 5, 14) 

Generalised EBS (formerly Köbner)	 KRT5, KRT14 (keratin 5, 14) 

Dowling-Meara EBS (DM-EBS)	 KRT5, KRT14 (keratin 5, 14) 

EBS with muscular dystrophy (EBS-MD)	 PLEC1 (plectin) 

EBS with pyloric atresia (EBS-PA)	 PLEC1 (plectin), ITGB4, ITGA 6 (integrin ß4, a6)

Junctional EB (JEB) (separation within the lamina lucida)

Herlitz JEB (HJEB)	 LAMB3; LAMC2, LAMA3 (laminin 332) 

Non-Herlitz JEB (nHJEB)	 COL17A1(BPAG2), LAMB3 (laminin 332) 

Pyloric atresia JEB syndrome (JEB-PA)	 ITGB4, ITGA6 (integrin ß4 a6)

Dystrophic EB (DEB) (separation beneath the lamina densa)

Dominant DEB (DDEB)	 COL7A1 (type VII collagen) 

Recessive DEB (RDEB, formerly Hallopeau-Siemens)	 COL7A1 (type VII collagen) 

Recessive DEB (RDEB, generalised other – formerly non-Hallopeau-Siemens)	 COL7A1 (type VII collagen)
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diagnosis 22, 24-26. This newest prenatal diagnostic technique 
involves a single blastomere biopsy from the 6-10 cell 
stage of the fertilised embryo followed by single cell DNA 
mutational analysis 22, 24-26. Disease free embryos are then 
implanted into the uterus, thereby avoiding pregnancy 
termination associated with conventional methods. However, 
this technique has several drawbacks. Firstly the high cost 
and high level of technical expertise required is currently 
prohibitive, making the number of places limited. Secondly, 
the low success rates for deliveries together with the high 
costs make pre-implantation diagnosis an unattractive 
option. Nevertheless, there is a good chance that, with future 
technical advances, pre-implantation diagnosis will become 
much more widespread and will serve as a useful tool for EB 
and other severe genodermatoses.

Putative treatments for EB
While techniques like prenatal and pre-implantation 
diagnoses have their places in the clinical battle against EB, 
there are frequently feelings of despair for older patients with 
the more severe forms of JEB and DEB. Current treatments 
are limited to palliative, friction prevention and basic wound 
dressing and the use of some corticosteroid creams. Therefore 
research into long-term treatment options is important to 
improve the current poor patient outcome for EB patients. 
We will discuss possible long-term treatment for EB patients 
by briefly outlining how different forms of gene therapy have 
developed and how many small-scale clinical trials have 
shown potential.

Gene therapy approaches – in vivo verses ex vivo

There are three main strategies for gene therapy – in vivo, 
ex vivo and foetal (or in utero) gene therapy. These three 
areas have relative advantages and disadvantages. In vivo 
therapy, the direct application of a transgene to the patient’s 
skin is relatively quick and easy to perform but drawbacks 
include safety issues and shorter-term transgene expression 
compared to ex vivo techniques. The ex vivo approach requires 
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Figure 2. The ultrastructural features of normal human skin and the 
dermal-epidermal junction.

The upper layers of the skin comprise the epidermis and upper dermis (a). 
Ultrastructural observation of these layers reveals a thin, undulating layer 
dermal-epidermal between the epidermis and dermis (b). Higher magnification 
of the region within the black square (b) reveals the dermal-epidermal junction 
with epidermal basal keratinocyte containing numerous keratin intermediate 
filaments and the boundary of the cell marker by the plasma membrane (c). 
Intermittent focal sites of electron density, HDs (white arrows) are present 
along the membrane and internally can be separated into inner and outer 
plaques that are associated with keratin filaments. Beneath the HD is an 
electron dense line parallel to the membrane, the sub-basal dense plate that lies 
within the lamina lucida, through which anchoring filaments (labelled) traverse 
into the lamina densa. Protruding from the lamina densa (basal lamina) on its 
dermal side, are small semi-circular cross-banded anchoring fibrils that can be 
seen looping around dermal collagen fibrils in the sub-lamina densa region and 
re-inserting into the lamina densa. Scale bars (a) 100mm, (b) 10mm, and (c) 
150nm.

Figure 3. Schematic showing the molecular components of the HD 
and epidermal basal lamina.

Basal keratinocyte keratin intermediate filaments (K5 and K14) are associated 
with the HD inner plaque (at the top of the diagram in the upper orange box) 
where plectin (in purple) and eBPAG1 (in green) are localised and are thought 
to both be involved in binding keratins. Plectin spans the inner and outer 
plaque and binds the integrin ß4 subunit (in light grey). Present in the outer 
HD plaque are the transmembrane adhesion proteins collagen XVII (COL17) 
(BP180 in red) and the integrin a6ß4 (dark/light grey and red respectively). 
In addition there is the transmembrane tetraspanin or CD151, also known as 
PETA-3 (pink) and the 19-DEJ-1 antigen/uncein in the mid lamina lucida space 
(yellow oval). Within the lower lamina lucida and lamina densa regions are the 
three chains of laminin 332 (a3 chain in yellow, ß3 chain in green and g2 chain 
in red), collagen IV (orange), nidogen/entactin (green semicircles) in addition 
to other laminin isoforms. Beneath the lamina densa (shown in aqua blue), the 
type VII collagen NC-1 domains (black circles) are attached to either end of 
anti-parallel anchoring fibrils that form loops that originate and terminate in 
the lamina densa enclosing dermal collagen I/III fibres.
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the removal and expansion of cells and tissue in vitro and 
subsequent gene transfection using an appropriate vector. 
Foetal or in utero gene therapy is at the moment only 
experimental, but may prove beneficial for more severe 
genetic disorders with a high perinatal mortality as is the case 
for some JEB and DEB subtypes.

In vivo gene therapy

All methods for in vivo gene therapy have limitations in 
the long-term expression of the transgene and, as they are 
applied directly to patients, it is more difficult to monitor 
and control the extent of transgene introduction and genetic 
incorporation; however, these in vivo methods are quick and 
relatively cheap to carry out.

Ex vivo gene therapy

The ex vivo methods allow greater control of the extent of 
transgene and any erroneous effects can be clearly examined, 
limited and problems dealt with before gene-corrected cells 
are applied to patients. The use of patient’s own cells reduces 
the possibility of an immune response and, as viral vectors 
are generally used, typically long-term expression can be 
maintained using these ex vivo techniques.

Foetal (in utero) gene therapy

Still in the theoretical and developmental stages in animal 
models, foetal or in utero gene therapy has the potential 
to provide significant benefits in the treatment of severe 
congenital diseases including the most severe genodermatoses. 
Due to the increased pluripotent or stem cell population 
and stem cell densities in embryonic and foetal tissue, 
in utero targeting theoretically dramatically improves the 
chances of sustained transgene expression. In utero gene 
therapy would be particularly beneficial for the most severe 
congenital disorders where the therapeutic window for 
transgene expression usually before or immediately after 
birth is relatively short and, if treated at the appropriate 
developmental stage, may help prevent the early onset 
of damage to the epidermis and other affected organs, 
significantly improving patient survival.

Expression systems

Many different types of viral vectors and systems have been 
exploited for gene targeting in skin. Each viral system has 
distinct advantages and disadvantages for gene transfer. 
The first gene therapy techniques employed adeno-virus 
and adeno-associated virus. These viruses lead to higher 
expression levels and supported larger transfer genes; 
however, their expression was transient (only up to 2 weeks) 
and several adverse immune responses to the adeno-viral 
vector were reported 27.

Retroviral vectors allow for more stable, long-term gene 
transfer through recombination with the host genome 
(months). However, this recombination occurs at random 
sites throughout the entire genome so the risk of disrupting 
vital house-keeping or oncogenes is increased and the 
maximal viral packaging size is smaller than that of the 
adeno-viral vectors. Immune responses against viral vectors 
are responsible for poor expression and adverse effects. 
Ongoing research is looking at methods for dealing with 
immune responses either through vector design or host 
immunosuppression.

Recently, the use of non-viral, transposable elements has 
been exploited for epidermal gene therapy. These non-
viral vectors allow the stable integration of transgenes into 
chromosomes at specific sites via specific sequences allowing 
recombination within the genome. The elements – sleeping 
beauty retro-transposable elements 28, phiC31 integrase 29 and 
piggyBac 30 – have been shown to allow stable long-term gene 
expression in vitro. These elements do not contain any viral 
genes so they can be used more safely, making them more 
attractive for gene therapy. However, since transposable 
elements recombine into the host genome, they may disrupt 
genes that are required for normal cell growth and division 31. 
The phiC31 integrase system has been shown to be successful 
in the long-term gene expression of LAMB3 in keratinocytes 
and is currently being tested for use in clinical trials for the 
treatment of Herlitz JEB (HJEB) 32.

Gene therapy for recessive DEB (RDEB) patients 
with collagen VII defects (cell therapy)

Cell therapy, using cells as factories for the production of 
specific proteins, can readily be exploited in the skin and 
has already been shown to have some therapeutic benefit, 
particularly with collagen VII. Collagen VII is a large protein 
which is expressed by both dermal fibroblasts but more 
normally by epidermal keratinocytes and is secreted into 
the extracellular matrix where it provides a link between the 
dermis and basal lamina, forming the major component of 
anchoring fibrils 32-34 (Figures 2c & 3).

Mutations in the collagen VII gene lead to a wide spectrum of 
DEB severity depending on the mutation location and type of 
mutation, often leading to premature stop codons or missense 
mutations and resulting in loss or reduced expression of 
collagen VII 35, 36 (Table 1). In the less severe dominant DEB 
(DDEB), the blistering tends to subside over time. In the 
more severe RDEB form (Hallopeau-Siemens variant, Table 
1), the blistering is more widespread and accompanied 
by granulation tissue formation and subsequent fusion of 
digits on the hands and feet as a result of this excessive 
scarring, leading to severe morbidity and disfigurement. The 

McMillan JR, Long HA, Akiyama M, Shimizu H & Kimble RM	 Epidermolysis bullosa (EB) – diagnosis and therapy



Wound Practice and Research	 Volume 17 Number 2 – May 200967

blistering occurs throughout life, is often accompanied by 
lesions in the oral and oesophageal membranes and has a 
tendency to develop malignant squamous cell carcinoma. The 
treatment of severe DEB is restricted to avoidance of friction 
and to palliative care with intermittent surgery to release 
contractures and oesophageal stenoses. The severity of RDEB 
makes collagen VII gene therapy a prime candidate for gene 
therapy development.

Other approaches have targeted fibroblasts, using gene-
transferred DEB autologous fibroblasts into the dermis 37, 38. 
Gene-transferred fibroblasts are more capable of producing 
sufficient levels of collagen VII to be clinically beneficial than 
gene-transferred keratinocytes 39 in skin grafts on SCID mice 
and so may make for a more attractive target for gene therapy 
in the case of DEB. Using cell therapy to treat other diseases 
such as protracted infectious diseases of the skin is also a 
distinct possibility. Beta defensins are small proteins that have 
microbicidal properties. Epidermis engineered to express one 
of the human beta defensins (HBD3) showed antibacterial 
activity, both in culture and on mouse grafts 40. Conditions 
such as ulcers and other intractable infectious diseases could 
benefit from gene therapy that produces strong antibacterial 
protection.

The use of cells as gene factories is a strategy that is likely to 
benefit disorders where the gene product is exported from 
cells after synthesis, as in the case of collagen VII in fibroblasts 
and keratinocytes. For the majority of EB genodermatoses, 
however, the gene product is required within the cell or is 
limited to one specific cell type, therefore other methods 
or approaches for introducing and controlling transgene 
expression have been explored and employed.

Gene therapy for HJEB patients with laminin 332 
defects

Considerable progress in recent years has gone into identifying 
underlying mutations in laminin 332 and the disease it 
causes, HJEB 10. Laminin 322 (formerly laminin-5) comprises 
a complex of three laminin chains and is involved in linking 
collagen VII to the a6ß4 integrin (Figure 3) 2. The Herlitz form 
of JEB, where there is severely defective expression of laminin 
322, often leads to reduction in HD numbers and size, poor 
keratinocyte attachment and widespread blistering, leading 
to premature death within the first few months of life 1, 2, 9. 

Recent evidence has highlighted a role for collagen XVII in 
both keratinocyte adhesion to collagen IV and in cell signaling 
during migration that appears to be important in hair follicle 
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stem cell maintenance and accounts for the marked alopecia 
and hair follicles abnormalities observed in both collagen 
XVII knock mice and non-HJEB (nHJEB) patients 41. Non-
HJEB (nHJEB), where there is partial expression of a mutated 
or truncated forms of laminin 322, causes recurrent blistering 
and scarring which severely impairs the quality of life of 
these patients 42.

Mutations in collagen XVII also lead to nHJEB. Collagen 
XVII is a constituent of the HD; as a transmembrane protein 
it is thought to play a role in direct cell matrix adhesion and 
in structure or stability of anchoring fibres at the dermal-
epidermal junction. Often in many forms of JEB there is also 
incomplete alopecia and dental problems, such as enamel 
hypoplasia and dental caries. It also interacts with the 
a6ß4 integrins and BPAG1 proteins of the hemidesmosomal 
complexes (Figure 3). a6ß4 mutations have been shown to 
be causal in JEB associated with pyloric atresia (JEB-PA) and 
are usually fatal, though milder variants occur with some 
missense mutations 43, 44. The treatments for JEB are limited to 
symptomatic or palliative treatment and blister prevention.

The discovery of a mutational hotspot (p. Arg635X) in the 
beta 3 chain of laminin 332 that affects approximately 50% 
of all HJEB patients has cleared the way for several groups 
to develop transgene vectors that target this gene defect 10, 45. 
Ortiz-Urda et al. 32 have reported the successful integration 
of LAMB3 encoding the laminin beta 3 chain into primary 
keratinocytes from the severe Herlitz subtype of JEB using 
a plasmid encoding fC31 integrase. These keratinocytes 
were transplanted onto immunodeficient mice where human 
skin was produced with normal laminin 322 expression 
that exhibited no evidence of sub-epidermal blistering with 
normal HD assembly.

In a phase I/II clinical trial, primary keratinocytes were 
cultured from a patient suffering from non-lethal JEB affected 
by a point mutation in the LAMB3 gene (encoding LAM5-b3 
chain) 46. These primary keratinocytes were corrected using 
LAMB3 cDNA under the control of a monkey leukaemia 
virus promoter (MuLV-LTR). These corrected keratinocytes 
were transplanted as grafts back onto EB patients where they 
demonstrated a rescued phenotype and continued expressing 
the transgene for at least 1 year. The authors suggest that the 
transgene is present in the epidermal stem cell population, 
allowing the expression to continue during prolonged 
epidermal renewal. Furthermore, they were unable to detect 
any clonal expansion or selection of integration events in 
vivo which is a neoplastic risk associated with the use of 
monkey-derived retroviral vectors. Though still in the early 
stages, this apparently successful trial has demonstrated the 
powerful potential of targeting stem cells in the maintenance 
of long-term expression of transgenes in gene therapy.

Other gene mutations contribute to typically less severe 
forms of JEB (so-called nHJEB subtypes) 11, 12. Collagen XVII 
mutations typically result in a null or deficient collagen 
XVII phenotype. Retroviral gene transfer of collagen XVII 
into nHJEB patient keratinocytes resulted in expression of 
protein at the dermal/epidermal junction with no evidence 
of blistering in reconstituted epidermis 47. The production 
of a collagen XVII null mouse has proved to be essential 
for designing new collagen XVII transgenic therapies for 
nHJEB 48. This mouse has been used to research the auto-
immune disease bullous pemphigoid, which is typified by 
production of auto-antibodies against collagen XVII resulting 
in blistering in patients. Using the mouse collagen XVII null 
mouse, a humanised mouse expressing only human collagen 
was produced and the auto-antibodies against this protein 
were introduced via injection of human auto-antibodies into 
the mice 48.

Gene therapy for EBS patients with keratin and 
plectin defects

Keratins are cytoskeletal proteins and members of the 
intermediate filament super-family, with the existence of 
many keratin isoforms which are tissue and developmentally 
regulated. The cytokeratin mutations in EBS affect the 
structural integrity of the basal keratinocytes, leading to loss 
of normal cytoskeletal resilience and ultimate cell cytolysis. 
These mutations are generally dominant and can be severe 
but are also affected by significant phenotypic variation in 
disease severity. Mutations in the highly conserved residues 
lead to the most severe forms including Dowling-Meara 
EBS (DM-EBS), characterised by widespread blistering in 
response to minor trauma (Table 1). The Köbner form of EBS 
lies between these two in terms of disease severity and is 
associated with recessive mutations in the keratin genes.

Gene therapy approaches for these diseases differ from 
other genodermatoses due to the dominant negative effect 
of the mutations on the remaining, wild type, paired keratin 
bundles. Transgenic mouse studies have suggested that over-
expression of the normal keratin copy can overcome these 
dominant mutations to a significant extent, but for specific 
keratins only 49. Another intermediate filament protein, desmin 
(present in muscle), has also been used to restore the function 
of keratinocytes containing dominant negative mutations 
in K5 and K14. This technique could benefit a number of 
mutations as it does not depend on any site specific mutation 
in a particular keratin gene.

RNAi technology can overcome dominant gene 
disorders

Another approach is to target the mutant keratin directly 
using interference RNA and DNA specifically targeted 
against the mutant DNA. This approach provides probably 
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the most successful gene therapy technique for dominant 
gene disorders as this allows the normal gene product to 
function 50, 51.

Plectin mutations lead to forms of EBS with muscular 
dystrophy (EBS-MD), often incorporating other organ-like 
skeletal muscle due to the wide expression of plectin and its 
isoforms 3, 14, 15, 52. Plectin is a large cytoskeletal linker protein, 
linking intermediate filaments to actin and microtubules. 
Gene therapy for plectin defects has employed techniques 
such as spliceosome-mediated RNA trans-splicing (SMaRT). 
SMaRT uses the endogenous spliceosome machinery to 
effectively excise mutant exons knocking out the mutant 
protein from the cells and is thus potentially beneficial in 
dominant negative disorders. This technology has been 
shown to correct mutations in collagen XVII in keratinocytes 53  
and plectin mutations in a fibroblast model of EBS-MD 54. The 
removal of the mutant plectin isoform allowed the retroviral 
transfected wild-type plectin to function correctly in the 
fibroblasts. These promising results show how this technology 
can be applied to other dominant negative disorders such as 
the keratinopathy group of disorders.

Stem cell targeting

Though many of the gene therapies strategies have already 
inadvertently targeted epidermal stem cells, facilitating the 
persistence of transgene expression through subsequent 
rounds of cell division, stem cell targeting is widely regarded 
as the key to achieving long-term transgene expression. 
However, difficulty in identifying epidermal stem cells and 
their markers in the interfollicular epidermal stem cell 
population remains a major barrier. Currently cells that are 
thought to be stem cells are selected on the basis of self-
renewal potential and low terminal differentiation rates. The 
identification of p63 as a potential marker for keratinocyte 
stem cells may be of benefit 55. Considerable efforts are being 
made to definitively identify epidermal stem cell markers 
(particularly adult interfollicular stem cells). If it becomes 
possible to use these markers to isolate or target the stem 
cell population, then long-term, stable and expression of 
transgenes should be possible.

Summary
In recent years, the initial results of gene therapy for some 
of the severest genodermatoses have been reported. Initial 
clinical trials using gene-corrected skin grafts in JEB patients 
have produced encouraging results and the development of 
new techniques for overcoming dominant gene disorders 
and the improved targeting of stem cell populations provide 
inspiration for future developments. New techniques or 
combinations of techniques to improve transgene expression, 

delivery and safety should also provide further beneficial 
approaches for the treatment of severe congenital human skin 
disorders. It is likely to be many years before these treatments 
become widely used due to safety issues; however, the initial 
benefits and prospects of epidermal gene therapy are now 
already beginning to be seen.
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