Review

The importance of nutrition in wound management: new evidence from the past decade

Kurmis R, Woodward M, Ryan H and Rice J

Keywords nutrition, wound healing, arginine, glutamine, pressure injuries, diabetic foot ulcers

For referencing Kurmis R et al. The importance of nutrition in wound management: new evidence from the past decade. Wound Practice and Research 2021; 29(1):18-40

DOI https://doi.org/10.33235/wpr.29.1.18-40

Abstract

Malnutrition is known to contribute to wound development and impair wound healing through reduction in the availability of nutrients to maintain optimal cell maintenance and repair.

This review examines studies from the last decade identified via a search of PubMed[™] and systematic review databases to identify evidence for the effectiveness of nutritional interventions in wound healing. Studies reported identified via the search included 61 primary studies and six systematic reviews.

Rochelle Kurmis

BND APD, MClinSci Allied Health Project Manager, Adult Burns Unit Royal Adelaide Hospital, SA Australia

Michael Woodward*

AM, MB BS MD FRACP, Fellow Wounds Australia Head, Wound Management Clinic and Director Aged Care Research, Austin Health, Heidelberg VIC Australia Email Michael.woodward@austin.org.au

Hayley Ryan

RN, MBA, PGCertWM, AICGG, Cert IV TAA PhD Candidate Clinical Nurse Consultant – Wound Management WoundRescue, Glendale, NSW Australia

Jan Rice

RN, Mast Wound Care, Cert. Plastic & Reconstructive Surgery, Fellow Wounds Australia Wound Nurse Consultant, VIC Australia

* Corresponding author

Generally, single nutrient interventions were found to be less effective than interventions utilising multiple nutrients. Immune modulating supplements containing arginine (Arg) were shown in 13 studies to result in significant improvements in at least one outcome measure for the intervention groups. There was also support for the use of arginine combined with anti-oxidant nutrients in malnourished individuals with pressure injuries (PI), and this intervention was found to be cost effective. The administration of glutamine (Gin) via the enteral nutrition (EN) route appears to convey a beneficial effect, particularly in burns and trauma patients, compared to parenteral nutrition (PN) administration. Omega-3 fatty acids were found to improve healing of diabetic foot ulcers. Encouraging further large-scale, multi-centre, prospective nutritional intervention research in areas of evidence deficiency is recommended.

Introduction

Wound healing is an important focus of care across all settings, not limited to any particular condition or age group. Achieving optimal healing requires an understanding of nutritional requirements, and these need to be adapted to the setting and incorporated into a care plan.

The economic burden of wounds across various healthcare setting is not fully defined. This is due to a lack of centralised incidence and cost data. Chronic wounds such as pressure injuries (PIs) (also called pressure ulcers) are recognised as one of the more challenging wounds to manage for a multidisciplinary team¹. In Australia, PIs alone have been reported to cost an estimated A\$983 million for the 2012–13 fiscal year, equating to 1.9% of public hospital expenditure or 524,661 bed days from 121,645 cases². The 2017 New South Wales Pressure Injury Point Prevalence Survey reported that 7.7% of inpatients had a PI, with 4% of these being hospital acquired³. In residential aged care facilities, 7.8% of residents had a PI, and 9.3% of community or outpatient participants reported a PI in this survey³. In addition, acute wounds such as postoperative wound breakdown or surgical wound dehiscence (SWD) are often under-reported and contribute significantly to the economic burden of care⁴. In the US, non-healing infected surgical wounds were the most common and costly wound type, equating to US\$13.1 billion in Medicare benefits in 2014⁴. These are not only managed in the hospital setting, increasing average hospital length of stay (LOS) in the US by 9.4 days, but also in the community setting⁴. It has been reported in the UK that over 57% of SWD healing by secondary intention were managed in the community setting⁴.

Risk factors for the development of wounds are complex and multi-factorial. It is recognised that unintentional weight loss is a predictor for wound development; however, this is also complicated by health co-morbidities as well as individual circumstances⁵. Elderly people living on their own are at higher risk of malnutrition. Whilst meal supports may be available, this may not supply an adequate full day's required nutritional intake, and comes at an economic burden to the individual that may be a deterrence. Additionally, physical functioning may be impaired, limiting ability to optimally prepare meals and subsequently decreasing intake. Confinement to a bed or chair is a known contributor to PI and increased mortality risk⁵.

Malnutrition is known to contribute to wound development and impair wound healing through reduction in the availability of nutrients to maintain optimal cell maintenance and repair. Due to the decrease in sub-cutaneous adipose tissue in undernourishment, cushioning afforded over bony prominences is reduced, compromising the tissues ability to cope with pressure, friction and shear¹. In addition, immunity is decreased in the undernourished, allowing infection⁴. Malnourished patients are twice as likely to develop PI (relative risk (RR) 2.1; 95% CI, 1.1-4.2)5. Whilst malnutrition is not commonly thought of as a condition prevalent in western countries, the Nutrition Care Day Survey completed in 2010 indicated that, from 56 participating hospitals across Australia and New Zealand, representing 3122 patients, 32% of patients were malnourished, with a further 41% identified as "at risk of malnutrition"6.

Addressing nutrition in wound healing is a recognised part of the multi-disciplinary management required to achieve optimal healing outcomes^{1,4}. Differences do exist between the nutritional management of acute and chronic wounds; however, there are many similarities^{1,4}. Nutrition for wound healing is often described in terms of the provision of macronutrients, micronutrients and fluid (water). Macronutrients are probably the most commonly known group of nutrients and are considered as important for their role in wound healing, with the three pillars of protein, fats and carbohydrates falling under this umbrella term. Protein as a whole is considered the 'building block' of muscle or lean tissue for the body, as well as for cells required for optimal immune function (lymphocytes, leukocytes, phagocytes, monocytes and macrophages) and the wound healing protein collagen⁷. As part of normal digestion it is broken down into amino acids, of which some are non-essential (able to be produced by the body), some are essential (required to be provided through nutritional intake in adequate amounts), and some are conditionally essential⁸.

Conditionally essential amino acids are of particular interest in wound healing. Conditionally essential amino acids are those which, under normal physiological circumstances, are available in adequate volumes within the body to achieve healthy homeostasis; however, in periods of stress, additional exogenous sources are required to maintain optimal function⁹. Such examples regarding wound healing in the reported literature are Arg, Gln and methionine. Arg is a precursor for proline, glutamate and polyamine synthesis¹⁰. It has been demonstrated to promote wound healing, stimulate insulin, insulin-like growth factor-1 and pituitary human growth hormone. In-vitro studies have also demonstrated that it has a role in the promotion of T-cell proliferation¹⁰. Gln acts as a direct source of cellular energy to assist with metabolic functions as a nitrogen shuttle. Gln stimulates immune function and wound healing through acting as a fuel source for lymphocytes, macrophages and fibroblasts¹⁰. Importantly, Gln preserves gut integrity through acting as a primary fuel source for the enterocytes and colonocytes within the gastrointestinal tract which may prevent translocation of pathogenic bacteria across the intestinal lumen, in turn preventing systemic infections¹⁰. Gln is an important nutrient in the support of anti-oxidant function through its role as a precursor for glutathione and potentially reduces insulin resistance¹⁰.

During times of physiological stress, synthesis of nucleotides is down-regulated in the body, resulting in decreased replication of rapidly dividing cells required for wound healing and immunity, such as GI mucosa, lymphocytes and macrophages¹¹. One area of research relating to wound healing is the exogenous supplementation of RNA nucleotides in combination with other active nutrients¹¹.

Upon intake, fat is broken down into smaller components known as fatty acids which, similar to protein, are regarded as essential and non-essential, and cholesterol⁸. Fatty acids themselves are essential in the body to form the lipid bi-layer of all cell and organelle membranes as well as the membranes that insulate nerve axons. Fats also provide a source of cellular energy via beta oxidation during catabolic states8. Similar to protein, certain subgroups of fatty acids have been researched with specific interest related to wound healing. For example, the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are metabolised to comparatively less inflammatory and less immunosuppressive metabolites than omega-6 fatty acids¹¹ and this in turn may aid wound healing. Carbohydrates, specifically glucose, are the preferred substrates for cellular energy, especially for brain and erythrocytes. Current recommendations for a healthy diet are that 45-65% of energy be provided through carbohydrates (Australian Dietary Guidelines, available from: https://www.health.gov.au/resources/publications/the-australian-dietary-guidelines).

Micronutrients is the group terminology for nutrients that are present in the body in minute amounts but contribute to essential function and optimal homeostasis. This grouping is made up of vitamins, minerals and trace elements. Micronutrients provide co-factors for many necessary enzymatic processes in the body. Some micronutrients, especially fat soluble nutrients, have good reserves in the body when dietary intake is adequate in a healthy state; however, water soluble nutrients are not stored in the body and regular intake is essential for healthy functioning. During periods of stress, including that of wound healing, their intake becomes more essential.

Ascorbic acid, or Vitamin C, is possibly the most well recognised micronutrient in regards to is contribution to wound healing and immunity. Vitamin C acts as an antioxidant as well as being essential for collagen production in wound healing through its role as a co-factor during collagen synthesis. Similarly to Vitamin C, zinc is well regarded for its role in immune functions and wound healing¹². Deficiency of zinc leads to suppression of cell proliferation as it is a co-factor for many enzymes required for the synthesis of RNA, DNA and proteins^{13,14}.

Iron also has an essential role in wound healing as an essential part of haemoglobin which is required for oxygen transport to the regenerating wound tissue^{12,15}. In addition, iron is a co-factor in the enzymatic process required for synthesis of collagen^{15,16}. Emerging areas of research regarding wound healing include vitamin D, calcium b-hydroxy-b-methylbutyrate (CaHMB), probiotics, bioflavonoids and folate; however, their roles are currently less well understood¹⁷⁻²².

Nutrients investigated for their role in wound healing have traditionally been supplemented as an individual or single nutrient supplementation strategy or in addition to other nutrients which may convey their own beneficial effect on wound healing as a combined nutrient supplementation strategy. Alternate nutritional interventions have also been reported where interventional strategies employed are not able to be assigned to either of the first two categories.

The aim of this review is to summarise the readily accessible evidence from the past decade that addresses nutritional interventions in wound healing.

Methods

A literature review was conducted using the online database PubMed[™] to identify studies published in the past 10 years that evaluated the effect of nutritional interventions on wound healing outcomes. PubMed[™] was utilised due to its easy and free accessibility for clinicians, regardless of organisational affiliations. This interface searches the same Medline content as Ovid; however, it does not require subscription and includes all references as soon as they are

added to the US National Library of Medicine (NLM) without delay. Search terms included nutrition, vitamin, mineral, protein, amino acid, arginine, glutamine, fat, carbohydrate, zinc, iron and wound. In addition, to identify any systematic reviews related to this topic, a search was conducted of systematic review databases including The Cochrane Database, Joanna Briggs Institute Database of Systematic Reviews and Implementation Reports as well as PubMed[™]. Search parameters were limited to human trials, English language articles and publication date (defined for the purpose of this review as 1 January 2010 to 17 January 2020). Studies published earlier to this date range were included for presentation only where they were presented as part of a systematic review published within the specified date range for the search.

Interventions considered for inclusion were nutritional interventions including parenteral (PN), enteral (EN) or oral nutrition (ON) strategies. Outcome measures of interest to this study included wound healing, anastomosis integrity, LOS and mortality. Where included systematic reviews reported on alternate outcomes of interest than this review, this data was excluded from reporting. For the purpose of this review, studies investigating topically applied nutrients/ dressings, preventative administration of nutrition prior to radiotherapy, nutritional strategies to prevent wound development, study protocols, radiotherapy-induced skin/ mucous membrane conditions (dermatitis, mucositis), and pharmaceutical nutritional adjuncts (such as human growth hormone and anabolic steroids) were excluded. All citations retrieved from database searches were exported into the bibliographic citation management software EndNote® X9 (Thomson Reuters). After removal of duplicates and screening of titles and abstracts against eligibility criteria for the review, potentially relevant full text articles were retrieved and assessed for their suitability for inclusion in the review.

Results

The full process of study selection is detailed in Figure 1. The results are broken down into three categories – single nutrient supplementation strategies, combined nutrient supplementation strategies, and alternate nutritional intervention strategies. These are considered in detail, in particular relation to their role in wound healing.

Single nutrient supplementation strategies and their role in wound healing

Arginine

Three studies identified via our search strategy investigated the amino acid as a single nutrient intervention strategy in wound healing (Table 1)^{24–26}. Debats and colleagues²⁴ investigated the use of 30g intravenous (IV) Arg supplementation for 5 days post-autograft reconstructive surgery vs an isonitrogenous control and demonstrated no significant difference on wound healing outcomes²⁴. Two studies from Spain investigated the effect of EN supplementation of high dose Arg (20g and

18.9g per day) compared to lower dose Arg (12.3g per day) supplementation on wound healing outcomes following head and neck cancer surgery^{25,26}. Both of these studies demonstrated significantly less wound fistula formation in the high dose intervention groups (p=0.033 & p=0.006, respectively); however, no significant differences were seen in the rate of wound infections nor LOS^{25,26}.

One systematic review identified²⁷ included one study assessing the effectiveness of arginine butyrate administered parenterally on leg ulcer healing in patients with sickle cell disease. There was a non-significant difference in incidence of complete ulcer closure reported in the Arg butyrate group (30%, 11 of 37 ulcers) versus the control group (8%, two of 25 ulcers) (p=0.056). This study also reported an improved rate of healing as determined by the mean decrease in pressure ulcer size with Arg butyrate administration compared to the control; however, the relative effect was not estimable in the systematic review and this study was assigned a very low quality of evidence due to inconsistencies with randomisation of its small cohort (62 ulcers) and its lack of statistical power to determine an effect.

Glutamine

There were two studies identified investigating the supplementation of Gln as a single nutrient intervention strategy (Table 2)^{28,29}. Perez-Barcena and colleagues²⁸ investigated the use of IV Gln for 5 days in the intensive care unit (ICU) following multi-trauma admission. No effect of supplementation was demonstrated on mortality, LOS nor infectious complications²⁸. In contrast, the study reported by

Results	No significant difference in either wound healing measure between groups at day 5 and 10	Sig less fistula detection in high and medium dose Arg groups than low dose group (p=0.033), no difference in general or wound infections, Trend towards bower LOS in higher Arg group <low arg="" group<br="">(p=0.034)</low>	Sig less fistula detection in high dose Arg group (p=0.006), no difference in general or wound infections, no difference in LOS
Outcomes	Wound healing (angiogenesis & reepithelialisation)	Postop complications (general infections, fistula, wound infections), LOS	Postop complications (general infections, fistula, wound infections), LOS
Comparator	Isovolumetric, isonitrogenous placebo, Alanine (providing 44mmo// net N, 100.8kcal), n=19	Medium dose Arg via EN (12.3g/day), n=57	1. Medium dose Arg via EN (12.3g/day), n=28. 2. Low dose Arg via EN (5.7g/day), n=28.
Treatment	IV Arg for 5 days starting day of surgery (providing 30g Arg, 45.7mmol/I net Nitrogen, 120kcal), n=16	High dose Arg via EN (20g/day), commenced within 24hrs of surgery, fed for ~15 days per hospital protocol (min 10 days EN support), n=58	High dose Arg via EN (18.99/day), commenced within 24hrs of surgery, fed for ~10 days per hospital protocol , n=28
Sample size	40 allocated	15	84
Age (years±SD)	Intervention: 42.3 (±4.2). Control: 44.6 (±4)	Mean 62.6 (±11.7)	Mean 61.9 (±10.7)
Patient characteristics	Received autografting as part of reconstructive surgery	Head & neck carcer (squamous cell carcinoma), eligible for major ablative surgery	Head & neck carcer (squamous cell carcinoma), eligible for major ablative surgery
Setting	Netherlands, University Hospital. Recruited Jul 2006 to Jul 2009	Spain, Dept Otolaryngology, University Hospital, Jan 2007 to Nov 2009	Spain, Dept Otolaryngology, University Hospital, 2009–2011
Methods	DBRCT	DBRCT	RCT
Author/ year	Debats, 2011 ²⁴	De Luis, 2010 ²⁵	De Luis, 2015 ²⁶

Blass and colleagues²⁹ investigated EN supplementation of Gln, in addition to other anti-oxidant nutrients, and a high protein diet in trauma patients who had demonstrated delayed wound healing. This study demonstrated a significant improvement in time to wound healing (p=0.01); however, no effect on LOS was seen²⁹.

In the systematic review conducted by Tan and colleagues³⁰ investigating the effects of immunonutrients following burn injury, seven studies were identified that investigated the supplementation of Gin vs a control or placebo. All of these included studies were published between 2001 and 2004³⁰. Three of the included studies reported on all-cause mortality following supplementation and, when pooled in the systematic review, showed a significant decrease (RR 0.25 (95% CI 0.08 to 0.78) p=0.02)³⁰. All of the seven included studies reported on LOS, representing 255 participants³⁰. When pooled, these results demonstrated a significant decrease in LOS (RR -5.65 (95% CI -8.09^{1,31} to 3.22) p=<0.0001)³⁰. It should be noted that these analyses included studies where Gin supplementation was via the EN or PN routes, and results may differ for these methods of administration.

This systematic review also included three studies investigating the effects of ornithine α -ketoglutarate (a precursor for Gin and Arg) vs soy protein or placebo³⁰. All three studies, representing 155 participants, reported on mortality and, when pooled, results demonstrated no significant effect of supplementation (RR 0.93 (95%Cl 0.37 to 2.36) p=0.88)³⁰. One included study (n=48) reported on LOS and failed to demonstrate a significant decrease (RR –4.21 (95% Cl –18.87 to 10.45) p=0.57)³⁰.

Omega-3 fatty acids

Three studies were identified that investigated the supplementation of omega-3 fatty acids from fish oil sources^{32–34}, although two of these studies^{32,33} reported on different outcomes from the same cohort of study participants so have been combined for the presentation of outcomes in Table 332-34. Two study cohorts were administered EN enriched with fish oil compared to standard EN formulas³²⁻³⁴. The study by Tihista and colleagues³⁴ in burn injury patients requiring mechanical ventilation demonstrated a significant decrease in sepsis (p=0.03); however, no difference in LOS was seen³⁴. The cohort presented by Theilla and colleagues^{32,33} investigated PI patients in the ICU. This group demonstrated a deterioration in PI state in the control group, whilst the intervention group PI severity did not change significantly.

An additional double blind, randomised controlled trial (DBRCT) by Soleimani and colleagues³⁵ investigated the supplementation of omega-3 fatty acids derived from flaxseed oil (100mg/day, give twice daily for 12 weeks),

Table 1. Arginine: characteristics of included primary studies

versus a placebo in 60 patients with grade III diabetic foot ulcers. They reported that supplementation significantly reduced ulcer length (p=0.03), width (p=0.02) and depth (p=0.01) compared to the placebo³⁵.

In the systematic review identified by Tan and colleagues³⁰, only one study investigating the effect of omega-3 fatty acids following burn injury was included. This study was published in 1995 and included 25 participants. No significant effect was seen on mortality (p=0.41); however, a decrease in LOS was reported (RR –21.0 (95% CI –41 to –0.97) p=0.04)³⁰.

Zinc

One small primary study was identified that investigated the role of zinc supplementation as a single agent on wound healing outcomes in a cohort of 58 patients³⁶. Momen-Heravi and colleagues³⁶ supplemented patients with grade III diabetic foot ulcers with 220mg zinc (50mg elemental zinc) daily for 12 weeks in a DBRCT, placebo controlled study. They reported a significant increase in serum zinc levels (p<0.001), and a significant decrease in ulcer length (p=0.02), width (p=0.02), but not depth (p=0.05) in the intervention group compared with the placebo group³⁶. Significant improvements in serum insulin (p=0.009), HbA1c (p=0.01), total anti-oxidant capacity (p<0.01) and total glutathione status (p=0.006) were also reported benefits with supplementation³⁶.

Two additional studies identified investigated the supplementation of a carnosine zinc complex (Polaprezine) in adult patients with Pls^{37,38}. Both studies reported significant improvements with Polaprezine supplementation at 150mg/ day compared with no supplementation on wound healing from baseline until week 8 of supplementation (p=0.009³⁷ and p<0.001³⁸). Neither study was blinded nor randomised, and both studies consisted of small cohorts and were conducted by the same authors at the same site^{37,38}.

Two systematic reviews were identified that included the investigation of zinc sulphate supplementation on Pl³⁹ or arterial and venous leg ulcer⁴⁰ healing. Only eight trials were identified between the two reviews, representing 217 total participants, all conducted prior to 1980. All included studies were identified as having risk of bias. No beneficial effects of supplementation were identified by either review^{39,40}.

Vitamin D

Three studies identified as part of this review supplemented with vitamin D versus placebo^{20,41,42}, whilst a fourth study provided a nutritional supplement fortified with vitamin D, calcium b-hydroxy-b-methylbutyrate (CaHMB) and protein versus a standard diet¹⁹.

Razzaghi and colleagues⁴¹ investigated the supplementation of 50,000 IU of vitamin D every 2 weeks versus placebo, over a 12-week period in 60 participants with grade III diabetic foot ulcers. This study reported an overall positive effect on wound healing with supplementation by demonstrating a significant decrease in the length (p=0.001), width (p=0.02) and depth (p<0.001) of the ulcers⁴¹.

Burkiewicz and colleagues²⁰ investigated the supplementation of 50,000 IU of vitamin D every week for 2 months versus no supplementation in 52 vitamin D deficient participants with chronic venous leg ulcers. A non-significant trend towards improved healing with supplementation was reported $(p=0.0676)^{20}$.

In the DBRCT presented by Gottschlich and colleagues⁴² vitamin D supplementation (100 IU/kg/d vitamin D2 in 18 patients or 100 IU/kg/d vitamin D3 in 15 patients) was compared to a control group (17 patients) following severe paediatric burn injury. No difference in LOS, number of surgical procedures, nor mortality was identified⁴².

The randomised control trial (RCT) reported by Ekinci and colleagues¹⁹ investigated the use of a diet supplemented with specialised wound healing supplements (enriched with 3g CaHMB, 1000 IU vitamin D, and 36g protein) vs a standard diet alone in 75 postoperative hip fracture patients. Supplementation was reported to significantly decrease wound healing time (p=0.037); however, no differences in LOS were observed between groups (p=0.76)¹⁹.

Vitamin C

One study identified by Li and colleagues⁴³ investigated the supplementation of oral vitamin C for 7 days post dental implant surgery in 128 participants on wound healing outcomes compared to no supplementation. They demonstrated that patients who received dental implants supported with a guided bone regeneration (GBR) technique and implants for chronic periodontis had significantly improved wound healing outcomes (p<0.002) compared to no supplementation⁴³. Patients who underwent implants and Bio-Oss collagen grafts and dental implants without grafts or periodontis did not demonstrate any significant benefit from supplementation⁴³.

Magnesium

Two studies identified investigated the effect of magnesium supplementation either alone or combined with other nutrients on wound healing outcomes⁴⁴.

In the DBRCT conducted by Razzaghi and colleagues⁴⁴, 70 participants with grade III diabetic foot ulcers were administered either 250mg/day of magnesium or placebo. Supplementation was reported to significantly decrease ulcer length (p=0.01), width (p=0.02) and depth (p=0.003)⁴⁴.

Also investigating the effects of nutritional supplementation of grade III diabetic foot ulcer healing, Afzali and colleagues⁴⁵ supplemented 57 participants with either 250mg/day of magnesium combined with 400 IU vitamin E/day or placebo for 12 weeks. This intervention was also reported to significantly reduce ulcer length (p=0.003), width (p=0.02), and depth (p=0.02) compared to the placebo group, although the mix of nutrients makes it difficult to determine if this effect was related to either nutrient alone or the combination⁴⁵.

	Results	No effect on mortality, LOS, infections	Significant shorter time to wound healing (p=0.01) in intervention group, no effect on LOS
	Outcomes	New infections within 14 days post- randomisation, ICU & LOS, mortality	Wound healing time, LOS
	Comparator	Normal saline placebo, for 5 days; n=71	Protein rich diet + isoenergetic sachets (maltodextrine), n=10
	Treatment	L-analyl-L-glutamine dipeptide 0.5g/ kg body weight/ day (=0.35g L-Gln/ kg/day) IV via continuous infusion, for 5 days: n=71	Protein rich diet + 2x sachets Gln Plus/ day (500mg ascorbic acid, 166mg alpha- tocopherol, 3.2mg beta-carotene, 100micro g Selenium, 6.6mg zinc, 20g Gln) mixed with fluid (food/ drink), n=10
	Sample size	142	20
	Age (years; range)	Intervention: 43 (30–59). Comparator: 39 (28–52)	Intervention: 45 (36–76). Comparator: 46 (27–56)
led primary studies	Patient characteristics	18–75 years old, admitted to ICU with multi-trauma, requiring EN &/or PN. Caloric goal 28kcal/kg/day, protein (excluding Gln) 1–2g/day	Adult trauma patients with delayed wound healing (failure to heal within 10 days), Caucasian
racteristics of incluc	Setting	ICU, Spain. Four centres, Oct 2010 – Oct 2012	Germany, Orthopaedics & Trauma, Oct 2007 – Nov 2008
utamine: cha	Methods	Multi- centre DBRCT	DBRCT
Table 2. Gl	Author/ year	Perez- Barcena, 2014² ⁸	Blass, 2012²⁰

c Ċ ¢ Tahla

	sults	wer frequency of basis (p=0.03) in arvention group, nd toward overall <i>ver</i> infectious nplications. LOS an 7 days lower, dian 1 day higher,).53)	n-significant erence in PI score baseline, PUSH are increased nificantly over e in control group 0.02) but no nificant changes trervention group. difference in LOS
	Outcomes Re	Infectious LOS set complications, LOS set (days), mortality tree low cor (me me	PUSH score, LOS No diff at 1 sc f (p= sig sig in ii
	Comparator	Standard low-fat EN (sunflower oil). n= 45	lso-nitrogenous control (Jevity, Abbott). n=20
	Treatment	Low fat EN where 50% of fat content was replaced with fish oil rich in n-3 poly-unsaturated fatty acids. n=47	Fish oil & micronutrient enriched formula (Oxepa, Abbott). n=20
	Sample size	92	40
/ stuares	Age (years±SD)	Intervention: 38.7 (± 16) Control 41.6 (±16.6)	Intervention: 49.3 (±20.7) Control 53.1 (±19.3).
s or included primary	Patient characteristics	≥18 years, burns ≥15% TBSA, inhalation injury, requiring mechanical ventilation for ≥6 days, exclusive EN for ≥6 days	Adults, admitted to ICU with or developed ≥1 grade II PI and expected to require ≥5 days EN
acids: characteristic.	Setting	ICU, Uruguay	ICU, Israel
nega-3 ratty	Methods	DBRCT	RCT
lable 3. Un	Author/ year	Tihista, 2018 ³⁴	Theilla, 2012 ^{32, 33}

Combined nutrient supplementation strategies and their role in wound healing

The largest grouping of supplementation type identified as part of this review was the supplementation of Arg in conjunction with other macro and micronutrients as part of immunonutrition regimens, delivered via various EN and ON preparations, with 16 studies identified (Table 4)⁴⁶⁻⁶¹.

Eight of the studies investigating immune-nutrition strategies identified studied cohorts of patients presenting with PI, venous ulcers or diabetic ulcers^{46-52,61}. The remaining eight studies investigated outcomes for patients undergoing surgery for various malignancies⁵³⁻⁶⁰.

In 13 studies where an immune modulating supplement containing Arg was compared to a standard or placebo control with no or very low levels of Arg, significant improvements were seen in at least one outcome measure for the intervention groups^{47–50,52–57,59–61}. In two studies where no effect was seen in the whole cohort, when adjusted for nutritional parameters, patients with poorer nutritional indices (severe weight loss or hypoalbuminaemia) demonstrated significant improvements in outcome measures compared with controls^{51,58}. This effect was not seen in the study by Leigh and colleagues⁴⁶. This study compared a high dose of Arg (9g/day) supplementation with a moderate dose Arg (4.5g/day) supplementation in non-healing PI patients. Both groups demonstrated significant improvements in wound healing outcomes with supplementation, whilst wellnourished patients demonstrated a trend towards improved healing rates compared to malnourished patients (p=0.057)⁴⁶. The high dose supplementation group did meet significantly more of their energy (p=0.008) and protein (p=0.008) intake compared with the moderately supplemented group, with no difference in weight change seen over the study period⁴⁶.

The cohort of 200 malnourished adults with stage II-IV pressure ulcers in long-term and home care services presented by Cereda and colleagues⁴⁷ provided a mixed nutritional supplement containing Arg and anti-oxidant nutrients compared to an isocaloric, isoitrogenous control, Supplementation demonstrated a significant decrease in pressure ulcer area (60.9%) compared to control (45.2%) (p=0.017). Both intervention and control demonstrated significantly improved wound healing (p<0.001)⁴⁷. Interestingly, this group provided a later economic evaluation of this study⁶². This demonstrated that although the intervention supplement was significantly more expensive that the comparator (p<0.001), the intervention resulted in significant savings overall from the non-nutritional costs of care (p<0.001) [nursing p=0.001, dressings p=0.024], and significantly lower costs of PI care overall (p=0.013)62.

In the systematic review conducted by Langer and Fink³⁹, seven studies (including the studies by van Anholt et al.⁴⁸ and Ohura et al.⁶³ identified in this literature search, with the remainder published prior to our search date criteria) were identified investigating mixed nutritional supplements

compared to other nutritional interventions, and four trials (again including van Anholt et al.⁴⁸) were identified comparing Arg-enriched mixed nutritional supplements against a standard hospital diet. When pooled, Arg-enriched mixed nutritional supplements improved Pressure Ulcer Scale for Healing (PUSH) score when compared to the standard hospital diet (p=0.0001). This analysis was limited by the small number of participants in the three individual studies included (n=80). Two studies were pooled regarding the outcome measure of ulcer size, representing 71 participants. This analysis favoured the effect of supplementation on ulcer size: however, the overall effect was not significant (p=0.14). This lack of significance is likely due to the small sample sizes in both included studies, identified in the review as being statistically underpowered, as well as their large confidence intervals.

In the systematic review conducted by Tan and colleagues³⁰, four studies (published prior to 2010) were identified that investigated the effects of combined immunonutrients vs multi-nutrient supplementation or placebo following burn injury. All four studies, with a total of 163 participants, reported on mortality as an outcome measure³⁰. When pooled, there was no significant effect of supplementation seen (RR 1.1 (95%CI 0.47 to 2.6) p=0.83)³⁰. Three of the included studies reported on LOS; when pooled, these also failed to demonstrate a significant effect with supplementation (RR 1.93 (95%CI –4041 to 8.28) p=0.55)³⁰.

Probiotics

Three studies identified through the review search strategy investigated the effect of probiotic administration on wound healing outcomes.

The DBRCT conducted by Kotzampassi and colleagues²¹ investigated supplementation with a probiotic regimen on outcomes following elective open colonic resection with primary anastomosis for colorectal cancer. Participants (n=164) were assigned to a probiotic regimen consisting of a pre-operative loading dose of four capsules followed by one capsule twice daily orally for 15 days or placebo²¹. The probiotic capsules contained four active strains consisting of Lactobacillus acidophilus 1.75x 10ºcfu, Lactobacillus plantarum 0.5x 10°cfu, Bifidobacterium lactis 1.75x 10°cfu, 1.5x 10⁹cfu²¹. Saccharomyces boulardii Probiotic supplementation was reported to significantly decrease overall complications (p=0.01), infectious complications (p=0.009), anastomotic leak (p=0.031), and LOS (although this data was not provided by authors)²¹.

In the DBRCT, placebo controlled study conducted by Mohseni and colleagues¹⁷, the effect of a probiotic regimen was investigated on wound healing outcomes in 60 grade III diabetic foot ulcer patients. A probiotic capsule containing *L. acidophilus*, *L. casei*, *L. fermentum*, *B. bifidum* (2x10⁹cfu/g each) or placebo was provided daily for 12 weeks¹⁷. Supplementation was reported to significantly decrease in ulcer width (p=0.02), length (p=0.01), and depth (p<0.02)¹⁷.

Results	Sig decrease in PUSH score over time in both groups (p<0.001), no difference in healing rates. Well nourished patients had trend towards greater improvement in healing rates than malnourished patients (p=0.057). No significant difference in healing rates based on Arg dose (p=0.393), patients in 99 Arg group met significantly more energy (p=0.008) and Ptn (p=0.008) reqts. No significant weight change in either group.	Overall Treatment effective for both experimental and control groups in improving PI healing (p<0.001). At 8 weeks mean reduction in PI size was 60.9% in intervention group compared to 45.2% in control group (p=0.017). Non- sig decrease in intervention group towards complete healing (p=0.097). No sig diff between groups in regards to reduction of area at 4 weeks (p=0.149), and in regards to wound infections (p=0.83)
Outcomes	PUSH score, Nutritional status (SGA), dietary adequacy	% change in PI area at 8 weeks, complete healing, wound infection, % change at 4 weeks
Comparitor	Arg 4.5g/day (1x sachet Arginaid). n=12	Ad libitum food intake + 400mL (4x100mL bottles between meals) HPE ONS (500kcal, 40gPtn, 0g Arg, 9.2mg zinc, 9.2mg Vit E, 76mg Vit C), for 8 weeks or until complete healing or withdrawal, n=99
Treatment	Arg 9g/day (2x sachets Arginaid powder = 4.55 mg Vit C, 40.5mg Vit E each). n=11	Ad libitum food intake + 400mL (4x100mL bottles between meals) HPE+A102K ONS (Cubitan) (500kcal, 40gPtn, 6g Arg, 18mg zinc, 128mcg Selenium, 76mg Vit E, 500mg Vit C), for 8 weeks or until complete healing or withdrawal, n=101
Sample size	5	200
Age (years±SD)	Intervention: 67.5 (±4.9). Comparator: 69.8 (±5.2)	Intervention: 81.1 (±10.8). Comparator: 81.7 (±10.7)
Patient characteristics	Inpatients with stage II–IV non-healing PI consuming oral diet and not on Arg supplementation	Malnourished, adult long-term care residents or patients receiving home care support services presenting with stage II–IV PI; if multiple, most severe selected
Setting	Tertiary health service, Australia	7 sites, Italy, between Feb 2010 – Nov 2012
Methods	RCT	Multi-centre DBRCT
Author/ year	Leigh, 2012 ⁴⁶	2015 ⁴⁷

Wound Practice and Research

studies	
primary s	
ncluded	
eristics of i	
s: charact	
nutrients	
er active	
vith othe	
oplements v	
ntaining sul	
Arg co	
Combined	
continued. (
Table 4	

Results	Decline in pressure ulcer size in the ONS group differed sig from control over 9 weeks (p=0.006). PUSH scores improved Sig in ONS group compared with control (p=0.011). Significant decrease in number of decrease in number of decrease in number of the 2003), significantly less time spent on dressing changes in ONS group compared to control (p=0.005), Mean ONS intake 75.8(± 3.7)% vs control 86.5(± 2.3)% (p=0.042). No significant difference in activity levels, mobility. No significant difference in activity levels, mobility. No significant difference in activity levels increased to control (p=0.015). No significant difference in sectivity levels increased to control (p=0.015). No significant differences in BMI, gastrointestinal intolerance (except for constipation , n=4 in ONS group). Average healing rate:ONS; 0.26cm ² /day. Control; 0.14	Length of supplementation (range) 14–38 days. No significant difference in wound size change between groups, significant increase in viable tissue in intervention group wound compared to control (p=0.02) No difference in PUSH scores between groups. No significant difference in nutritional intake (Kcal & Ptn) between groups
Outcomes	Change in pressure ulcer surface area, PUSH Score, length, Walnutrition Universal Scorening Tool (MUST) score, blood parameters	Wound healing (wound area, PUSH score). Nutritional status (SGA, MUAC (Mid Upper Arm Circumference)
Comparitor	Placebo – non- caloric. n=21	2x sachets of identical appearing placebo (CHO and calcium). n=12
Treatment	ONS enriched with Arg. AOx, micronutrients (Cubitan) 3x 200mL/day (750kcal, 85.2g CHO, 60g Ptn, 9g Arg) for up to 8 weeks. n=22 weeks. n=22	2x sachets of Abound TM (7g Arg, 7g GLN, 7.9g CHO, 1.5g calcium HMB, 200mg calcium each sachet)/day for a minimum of 2 weeks. n=11
Sample size	47, 43 in intention to treat analysis	26
Age (years±SD)	Intervention: 76.2 (±3.2). 73.0 (±3.3)	Intervention: 79.4 (±5.74). Comparator: 75.5 (±3.19)
Patient characteristics	Well-nourished patients, 18-90 years old, receiving standard care for stage III-IV PI and standard diet without nutritional supplementation for at least the study the study	Asian cohort, stage II–IV PI with no observable improvement in wound characteristics
Setting	Healthcare centres, hospitals, long-term care facilities. Czech Republic, Belgium, Netherlands, Curacao	Changi General Hospital, Singapore
Methods	Multi- country DBRCT	DBRCT, placebo controlled
Author/ year	Van 2010⁴ ⁸	Wong, 2014⁴9

-	Hesuits	No difference in energy or Ptn intake between groups, Significantly higher Arg intake in intervention group (p<0.05), significant positive improvement on nutritional status in intervention group (p<0.05), Non-significant greater reduction in median PUSH raw score. Non- significant trend to greater PI area % change reduction in intervention group.	Significant decrease in time to healing for all PIs in the intervention group compared with control (p=0.006)	No significant difference in wound healing overall. Post- hoc analysis, patients with albumin = 40g/L (n=127)<br had significantly greater total wound healing at 16 weeks with supplementation vs control (p=0.0325). In patients with baseline ankle-brachial index <1 (n=119) significantly greater total wound closure in supplemented group compared with control (p=0.0079), patients with low albumin had significantly greater proportion of total healing compared with control (p=0.0042). No significant difference in adverse events between groups
	Outcomes	Energy & ptn intake, nutritional status (SGA), PUSH score, PI change from baseline, LOS	PI healing (PUSH score, time to healing)	Wound healing
	comparitor	Standard nutritional care provided by clinical team, standard or HPE diet +/- ONS +/- EN, n=17	Historical control of patients from service database with PIs over the previous 3 years, with adequate documentation, n=17	Control supplement, Iow Glycaemic Index, 88kcal, n=141
	Ireatment	Intensive individualised nutritional care provided by research dietitian (at least 3 x/week), HPE diet +/- ONS + Wound healing ONS containing Arg, Vit C, zinc (participants offered two different brands based on preference and prescribed per manufacturer recommendations), n=14	2x sachets Arginaid powder/day (9g Arg, 8g CHO, 310mg Vit C, 120mg Vit E), until full wound healing as assessed by spinal nurse, n=18	Arg 7g, 7g Gln, 1.2g ß-hydroxy- B-methylbutyrate, 79kcal (Juven/ Abound) supplement drink, x 2/day for 16 weeks, n=129
-	size	50 31 completed	8	271
	Age (years±SD)	Intervention: 62.3 (±20.7). Comparator: 65.8 (±15.8)	Intervention: 52.2 (±2.7). Comparator: 49.9 (±4.1)	
	ratient characteristics	Inpatients with existing or acquired stage II–VI PI stage II–VI PI	Spinal cord injury, Grade II, III, IV PI, >18 years, predominately well nourished	Community dwelling, type 1 or type 2 diabetes undergoing pharmacological treatment for glycaemic control, at least 1 grade 1A foot ulcer (University of Texas criteria)
	setting	Brisbane, tertiary referral hospital	Melbourne, spinal outreach risk reduction service	38 hospitals and wound care centres in USA, Europe, Taiwan
	Methods	RCT, pilot	Quasi controlled trial	DBRCT
	year	Banks, 2016 ⁵⁰	Brewer, 2010 ⁶¹	Armstrong, 2014 ⁵¹

Table 4 continued. Combined Arg containing supplements with other active nutrients: characteristics of included primary studies

Kurmis et al.

Table 4 coi	ntinued. Comb	ined Arg containing	supplements with	other active nu	trients: chara	cteristics of included	primary studies		
Author/ year	Methods	Setting	Patient characteristics	Age (years±SD)	Sample size	Treatment	Comparitor	Outcomes	Results
Bauer, 2013 ⁵²	Pragmatic, randomised	Acute care inpatient/ outpatient setting, Australia	Chronic wound (venous ulcer, pressure ulcer, surgical wound)	67.8 (±22.3)	24	Open labelled wound ONS 2x 237mL/day (21g Ptn, 2100kJ, 9g	Standard ONS, 2x/day (18g Ptn, 2100kJ), n=12	Wound healing (PUSH tool), nutritional status (patient-	Significant improvemen PUSH score in standar group at 8 weeks (p=0.1 but not wound-ONS gr

Author/ year	Methods	Setting	Patient characteristics	Age (years±SD)	Sample size	Treatment	Comparitor	Outcomes	Results
Bauer, 2013 ⁵²	Pragmatic, randomised	Acute care inpatient/ outpatient setting, Australia	Chronic wound (venous ulcer, pressure ulcer, surgical wound)	67.8 (±22.3)	24	Open labelled wound ONS 2x 237mL/day (21g Ptn, 2100kJ, 9g Arg), n=12	Standard ONS, 2x/day (18g Ptn, 2100kJ), n=12	Wound healing (PUSH tool), nutritional status (patient- generated SGA), nutritional intake	Significant improvement in PUSH score in standard ONS group at 8 weeks (p=0.017) but not wound-ONS group. 3 patients fully healed in standard ONS group. No in wound ONS group. No significant difference in supplement compliance/ intake between groups
Kaya, 2016 ⁵³	RCT	Thoracic surgery clinic, Turkey	Anatomic lung resection for non-small cell lung cancer	58 (±8.8)	58	Pre-op ONS support, immune modulating, Arg, omega-3 fatty acids, nucleotides for 10 days, n=31	Normal pre- operative diet, no additional ONS, n=27	Complication rates, drainage tube times (anastomotic healing surrogate)	Significantly less complications (p=0.049) and lower mean drainage tube times (p=0.019) in intervention group
Moya et al., 2016 ⁵⁴	Prospective, randomised trial	Spain, University Hospital	Pre-op colorectal cancer diagnosis, for laparoscopic colorectal resection, normo- nourished	Intervention: 69 (51–85). Comparator: 68 (45–92)	allocated)	Pre/peri-operative immune-enhancing dietary supplement: (IEF)-ATEMPERO, 7 days pre and 5 days postoperative. 2x 200mL cartons/ day (providing 604kcal, 33.2g ptn, 4g Arg, .8g RNA, 3.08g omega-3 fats, 8.8mg zinc, 676mcg Cu, 28.4mcg Selenium); n=61	Dietary advice only; n=61	Infections (wound), anastomotic leakage, abdominal abcess, LOS	No difference in LOS, significant decrease in wound infections (p=0.006), no difference in surgical complications
Moya et al., 2016 ⁵⁵	RCT, multi- centre single- blinded	Colorectal cancer, Spain, 6 hospitals	Pre-operative colorectal cancer diagnosis, for colorectal surgery, normo- nourished	Median 69 (range 41–89)	244	Pre/peri-operative immune-enhancing dietary supplement: (IEF)-ATEMPERO, 7 days pre and 5 days postop. 2x 200mL cartons/ day (providing 604kcal, 33.2g ptn, 4g Arg, .8g RNA, 3.08g Omega-3 Fas, 8.8mg zinc, 676mcg Cu, 28.4mcg Selenium); n=122	Pre/peri-operative high pth dietary supplement: (HHS)- SUPRESSI, 7 days pre and 5 days postop. 2x 200mL cartons/day (providing 500kcal, 25.2g pth, 0g Arg, 0g RNA, 0g Omega- 3 FAs, 5.6mg zinc, 564mcg Cu, 23.6mcg Selenium); n=122	Infections (overall including wound), anastomotic leakage, minor surgical site infection, major surgical site infection (abdominal abcess), LOS	No significant differences in ONS compliance between groups. No significant difference in LOS, Significantly less infectious complications in intervention group (p=0.007), significantly less minor and major surgical site infections in intervention group (p=0.005, p=0.008), no significant differences in anastomotic leak rates (p=0.301)

S
<u>.</u>
ō
tu
S
2
a
3
Q
Q
é
2
ž
ĕ
.=
ð
ŝ
Ŭ
ïti
13
ē
st
ũ,
a
Ļ
0
ċ.
Jt.
ē
2
5
ē
D
Ξ.
St
ğ
1
é
t
0
4
Ξţ
2
Ś
Ē
Ð
E
e)
Q
9
SL
~
ž
÷
ĭ
μ
5
8
r.
2
P
σ
é
÷
þ
F
0
S
л. С
ed. C
ued. C
inued. C
ntinued. C
ontinued. C
continued. C
4 continued. C
e 4 continued. C
ole 4 continued. C
able 4 continued. C

]
Results	No significant difference in infections, LOS. When adjusted for compliance and adjusted for compliance and at least 75% consumption of ONS/EN, significant difference seen between intervention and no IN group for decreased surgical site infections (p=0.04), and trend towards decreased systemic infections (p=0.05) and LOS (p=0.05). LOS significantly increased for patients who developed infectious complications (p=0.001)	Significantly less major postoperative complications (systemic infections, fistula development) in intervention group (p<0.05)	No significant difference between complication rates or LOS overall. When adjusted for weight loss >/< 5% body weight in 3/12 pre-operatively: significantly less surgical site infections in intervention group (p=0.031). Trend towards unfavourable outcomes for IN when BMI>25kg/m ² (RR 2.86, Cl (0.68, 12.12)	Intervention group had significantly less infectious complications (p=0.04), decreased surgical wound infections (p=0.01077), decreased mortality (p=0.03), trend towards decrease wound dehiscence (p=0.05502), significant decrease in LOS (p=0.006)	IN group had 33% reduction in postoperative complications (p=0.06) & 39% decrease in postoperative infections (p=0.027) at 90 days. No diff in LOS
Outcomes	Systemic infections, surgical site infections, LOS	Postoperative complications	Surgical & non-surgical complications, LOS	Postoperative complications (infective & surgical, wound dehiscence, anastomotic leak, pancreatic fistula), LOS, mortality	Postoperative complications & infections, LOS
Comparitor	 Pre-operative IN (Impact): 7 days pre- operatively orally, and 7-15 days postoperative EN without immunonutrients, n=68. OIN pre-and postoperative ONS/EN without immunonutrients 	No pre-operative nutrition support, oral diet to meet EER, postoperative standard EN (Nutrison, Nutricia) for 8 days, n=20	Pre-operative diet only, n=117	Standard PN 10 days pre- operatively then postoperative standard EN via jejunostomy (Peptisorb: per 100mL- EPA + DHA=0g, Gln 0.35g, Arg 0.23g) for 7 days, n=153	Standard ONS (Boost Plus) 3x cartons/ day for 5 days pre & 5 days postoperatively. n=15
Treatment	Peri-op IN (Impact): 7 days pre- operatively orally, and 7-15 days postoperative EN Impact, n=73	5 days pre-operative IN (Impact) + diet to meet EER, postoperative EN with IN (Impact) for 8 days, n=20	5 days pre-operative IN (Impact) (100mL/ day orally) + diet, n=127	Standard PN 10 days pre- operatively then postoperative IN via jejunostomy (Reconvan: per 100mL; EPA + DHA=0.25g, Gln 10.2g, Arg 6.7g) for 7 days, n=152	IN (Impact Advanced recovery), 3x cartons/day for 5 days pre & 5 days postoperatively. n=14
Sample size	298 randomised, 205 completed	64	244 rrandomised, 224 underwent gastrectomy and included in analysis	305 randomised	29
Age (years±SD)	Intervention: 58.2 (±8.7). Comparator 1: 59 (±9.7). Comparator 2: 59.5 (±9.6)	Intervention: 61 (±3.8). Comparator: 62.1 (±2.6)	Intervention: 64 (26–76). Comparator: 65 (30–79)	lx: 60.2 (±12.4), Comparator: 61.5 (±11.8)	
Patient characteristics	Patients with upper aerodigestive tract cancer for surgical intervention	Patients with head and neck squamous cell carcinoma for surgical intervention	Elective total gastrectomy patients due to gastric cancer	Malnourished patients undergoing gastrectomy and/or pancreato- duodenectomy for cancer resection	Radical cystectomy for primary bladder cancer, men
Setting	8 centres in France	Department of Otolaryngology, University Hospital, Greece. Recruited between 2004–2008	Japan, recruited between Feb 2006 – Dec 2009	Poland, General Surgery Department, University Hospital. Recruited Jan 2003 – Dec 2009	Kansas, USA
Methods	Multi-centre DBRCT	DBRCT	Multi-centre RCT	DBRCT	DBRCT-pilot
Author/ year	2014 ^{ss}	Felekis, 2010 ⁵⁷	Fujitani, 2012 ⁶⁸	2011 ⁵⁸	Hamilton- Reeves, 2016 ⁶⁰

Mayes and colleagues⁶⁴ in their RCT administered *Lactobacillus rhamnosus GG* (15 billion CFU/dose), or placebo twice daily to their cohort of 20 paediatric acute burn patients requiring feeding tubes, until 95% wound closure was achieved. They reported trends towards lower requirements for operative excision/grafting procedures (p=0.23) and time to complete healing (p=0.23) with supplementation; however, no difference in medical LOS. It should be noted, however, that this small study was designed to evaluate the safety, not the efficacy, of supplementation with probiotics following burn injury and, as such, this study was underpowered to determine statistical effects on outcomes of interest to this review.

Bioflavenoids

Two studies were identified that Bioflavenoids alone¹⁸ or combined with anti-oxidant nutrients⁶⁵. In the study presented by Serra and colleagues¹⁸ in 83 patients with venous leg ulcers for more than 6 weeks, 8 months' supplementation was shown to have an improved healing rate at 12 months (83.8%) compared to the comparator group (60.56%)¹⁸. In contrast, in the small cohort of 20 superficial to partial thickness adult burn injury patients reported by Raposio et al.⁶⁵, supplementation of bioflavonoids combined with anti-oxidants demonstrated no differences on LOS (p=0.63)⁶⁵.

Alternate nutritional intervention strategies

Five additional studies identified investigated alternate or novel strategies not categorisable to the groupings above^{22,66-69}. Fifteen studies identified as part of the search strategy investigated heterogenous early EN, PN or ON support regimens in various medical conditions^{63,70-83}. Characteristics of these studies are summarised in Table 5. Despite population groups, early EN and ON interventions appeared to have positive effects on outcomes of interest, especially when compared to PN interventions.

In the RCT presented by Najmi and colleagues⁶⁷, 100 patients with 10-20% second degree burns were provided an oral diet consisting of 20% protein, 60% carbohydrate and 20% lipid until discharge. The intervention group received their lipid from olive oil sources, whilst the control group received their lipid from sunflower oil⁶⁷. The provision of lipid from olive oil was reported to significantly decrease the duration of wound healing (p=0.01) and LOS (p=0.05)67. The DBRCT, parallel group study by Babajafari and colleagues⁶⁹ investigated the effect of isolated soy protein supplementation with and without flaxseed oil as a functional food versus a wheat flour and corn oil food (cookie) comparator in 73 patients with 20-50% total body surface area (TBSA) burn injuries. Significant improvements were seen in wound healing in the isolated soy protein groups compared with the control at days 22 and 25 (p<0.05)69. All groups demonstrated a significant reduction in wound size from baseline over the 3-week study period (p<0.001); however, there was no significant difference between groups overall (p=0.7)69.

An open label, parallel group study conducted by de Franciscis and colleagues²² investigated the supplementation of folic acid (1.2mg/day) for 12 months in 87 patients with chronic venous ulcers who had hyperhomocysteinaemia (HHcy) versus chronic ulcer patients without HHcy and not supplemented with folate²². This study demonstrated a significantly higher rate of healing in the folic acid group than the comparator (p<0.05)²².

The RCT conducted by Fujita and colleagues⁶⁸ investigating the rate of anastomotic leaks following thorascopic esophagectomy for cancer resection, provided their intervention group with a continuous, warmed intra venous infusion of 18 amino acids for 30 minutes prior to and during surgery⁶⁸. They reported a significant decrease in surgical site infections (p=0.029) and no difference in anastomotic leaks (p=0.76) in their cohort of 130 participants⁶⁸.

A prospective, controlled, before and after comparative interventional study conducted by Bell and colleagues⁶⁶ investigated two differing nutritional care models on outcomes for 116 patients who had sustained hip fractures that required surgical intervention⁶⁶. The treatment group received a multidisciplinary nutritional care model, whilst the comparator group received individualised nutrition care⁶⁶. Whilst the intervention was shown to increase intake of energy (by 210%) and protein (by 207%), recruitment numbers were insufficient to determine an effect on pressure areas, surgical site infections, or mortality⁶⁶.

One additional systematic review was also identified that investigated nutrition strategies not elsewhere reported⁸⁴. In the systematic review presented by Masters and colleagues⁸⁴, two studies with a total of 93 participants, published prior to the year 2000, were included⁸⁴. One study investigated the use of two different high fat EN feed preparations versus an high carbohydrate EN feed⁸⁴. The second study compared a high fat EN feed control group to two high carbohydrate EN feed groups, one supplemented with omega-3 fatty acids⁸⁴. Due to the low participant numbers and heterogeneous nature of the included studies, no solid recommendations could be offered by the review authors regarding optimal fat to carbohydrate ratios in the EN feed provision to burn injury patients⁸⁴.

Discussion

Despite the recognised importance of nutrition in wound healing, this review has highlighted the paucity of high quality evidence generated in this field over the past decade and the difficulty in its interpretation. One major limitation with interpreting much of the literature in this field is the combined nutrient strategies. This prevents the active nutrients and optimal dosage from being deduced. Another limitation of these studies is the lack of nutritional intake or status (pre- and/or post-intervention) being reported or taken into consideration with the study design, such as in those reported by Serra et al.¹⁸, Raposio et al.⁶⁵, and

Results	Sig less total complications (p=0.048), no sig diff in wound infections, sig lower mortality (p=0.03)	Significantly lower median LOS with EEN (p=0.023), no difference in re-admissions (p=0.237). Less operative morbidity overall in EEN group (p=0.044). Significantly less wound infections (p=0.017), non significant decrease in anastomotic leaks (p=0.055). Wound dehiscence not reported	Significantly lower LOS in intervention group (p<0.05), significantly lower mortality (p<0.05)	Total complications significantly lower in EN group (p<0.05) (pressure sores 2 vs 5, stress ulcers 1 vs 6), significantly shorter monitoring time (p<0.05)
Outcomes	Complications, wound infection, mortality	LOS, operative morbidity/ mortality. Complications: Wound infection, open abdominal wound dehiscence, anastomotic leak	LOS, mortality	Complications, monitoring time
Comparitor	Standard diet, 3 meals/day, commenced immediately after the first wound dressing, n=50	IV fluids until commenced oral fluids, diet started post contrast swallow if no anastomotic leaks, if anastomotic leaks, if anastomotic leaks EN/PN commenced at discretion of surgeon. Nutritional requirements calculated at 30kcal/kg/day. n=57	Conventional IV resuscitation in first 48 hours, then EN after 48 hours. n=322	PN, commenced 48 hours postoperatively, included "glucose, fat milk, multi amino acids, vitamins, and trace elements". After 7–8 days EN commenced n=60
Treatment	NJT feeds within 4 hours of admission, n=52	Early EN (EEN), commenced within 12 hours postoperatively at 20mL/hr, 1kcal/mL formula, increased by 10mL/hr every 12 hours until goal of 80mL/hr achieved. Pancreatic resections started at 10mL/hr, 1.3kcal/mL feed and increased 10mL/12 hours until goal. Once oral intake commenced, EN continued overnight 1.5kcal/mL feed over 12 hours until 75% nutritional requirements achieved orally. n=64	EN commenced between 3–6 hours post burn. n=366	EN, via NGT. Commenced 48 hours postoperatively, 45g of full nutrients (inc 2g GIn/100g) added to 170mL water (200mL total), 6–7 feeds/day n=60
Sample size	10	121	889	120
Age (years)	20-76 (mean 48)	64 (57–72)	Intervention: 5 (±3.5). Comparator: 5 (±3)	Intervention: 52.3 (±2.5). Comparator: 53.1 (±3.7)
Patient characteristics	Burns >20% TBSA, >18 years old	All adult patients admitted with suspected operable upper Gl cancer. All patients had feeding jejunostomy inserted at time of operation	Children hospitalised with burns, 30 days – 12 years of age, burn ≥10% TBSA, sustained injury within 2 hours prior to admit	Head trauma patients requiring surgery
Setting	Burns Unit, Croatia	Regional United Kingdom Cancer Network	Burns Unit, Iran, Sept 2002–2004	China
Methods	RCT	Multi- centre RCT	RCT	RCT
Author/ year	2013 ⁷⁰	2011 ⁷¹ 2011 ⁷¹	Khorasani, 2010 ⁷²	Li, 2015 ⁷³

Kurmis et al.

Results	Significantly less infectious complications (p=0.043), no difference in nutritional status between groups, no mortality, significantly less bile duct complications (p=0.041)	Significantly lower LOS in intervention group (p<0.0001), no significant difference in anastomotic leaks or wound dehiscence (p=0.31)	Significantly shorter time to solid diet (p<0.0001), Significantly shorter LOS (p=0.019), no significant difference in wound infections, anastomotic leak, mortality	Significantly shorter LOS (p<0.0001), no significant difference in complications or anastomotic leak, no mortality,
Outcomes	Infectious complications, LOS, nutritional status, mortality, complications	LOS, postoperative complications (wound dehiscence, anastomotic leak)	Mean time to solid diet, LOS, Wound infection, anastomotic leak, mortality	LOS, major postoperative complications (wound infection, dehiscence, anastomosis leakage), intra- abdominal abscess
Comparitor	Maintenance on IV fluids until oral diet commenced n=19	Feeds started once NGT removed after clinical onset of bowel activity and decrease in aspirates, varied from 3–5 days, progressed as tolerated. No standardised protocol, n=31	Traditional feeding, nil by mouth until resolution of ileus, starting clear fluids progressing to solid diet as tolerated. n=60	Late feeding, fasted for 5 days, PN commenced postoperative day 2. n=30
Treatment	EN, NGT placed several days postoperatively, feeding commenced within 12 hours of tube placement, commenced at 20mL/hr then if tolerated increased to 60mL/hr by day 5. Low residue feed. EN discontinued when patient could consume >50% of provided diet. n=17	Early EN protocol, full strength pasteurised milk, starting at 24 hours postoperatively, 1-2mL/kg every 2 hours and increased by 1mL/kg after every 2 feeds if tolerated, n=31	Early feeding, oral fluids day 1 postoperatively, commencing at 24 hours, full fluid diet within 48 hours, solid diet in next 24 hours. n=60	Early feeding, clear fluids 24 hours postop, progressed to milk liquids then soft and normal diet next day (after 48 hours). n=37
Sample size	36	62	120	67
Age (years)	Intervention: 52 (43–65). Comparator: 52 (36–64)	Intervention: 43.3 months (±38.5). Comparator: 38.2 (±41.4) months	Intervention: 46.5 (±17.2). Comparator: 46.9 (±16.5)	Intervention: 17.4 (±24.6) months. Comparator: 23.7 (±32.6) months
Patient characteristics	Living donor liver transplant	Children under 12 undergoing elective ileostomy or colostomy closure	Consecutive patients who underwent open bowel surgery	Children 1 month – 12 years who underwent intestinal resection and anastomosis
Setting	South Korea, Jan 2013 & Aug 2013	India, Intervention group Jan 2011 – Feb 2012, retrospective control group Jan 2010 – Jan 2011	India	Iran, Feb 2011 and Sep 2012
Methods	RCT	Case Series, Historic Control	RCT	DBRCT
Author/ year	Kim, 2015 ⁷⁴	Yadav, 2013 ⁷⁵	Pragatheeswarane, 2014 ⁷⁶	Amanollahi, 2013 ⁷⁷

Author/ year	Methods	Setting	Patient characteristics	Age (years)	Sample size	Treatment	Comparitor	Outcomes	Results
Botella- Carretero, 2010 ⁷⁸	RCT	Spain, May 2007 & Sep 2008	Normal or mildly undernourished geriatric patients admitted for hip fracture surgery	~ 65	60	ONS: 2x 200mL Fortime/day providing 40g Ptn & 400kcal/day. From admission, maintained until discharge in addition to diet prescribed to meet EER. n=30	No ONS. Diet prescribed to meet EER only. n=30	LOS, postoperative complications, infections (wound), mortality	No mortality. No difference in LOS, infectious complications, weight. Intervention group had higher kJ (p=0.042) and Ptn intake (p<0.001). Higher Ptn intake was associated with lower postoperative complications (p=0.003)
Eabian, 2011 ⁷⁹	RCT	Trauma centre, Austria	Female patients, >65 years old, with hip fracture	Intervention: 85 (±7). Comparator: 82 (±8)	23	Postoperative ONS (E, Ptn, Aox), administered individually when energy or Ptn intake did not exceed 20–15kcal/kg and/ or 1–1.5g/kg Ptn. Continued for duration of LOS. n=14	Standard postoperative nutrition. n=9	POS	Average LOS shorter in ONS group (17≟4 days) than controls (19≟9 days)
Anbar, 2014 ⁸⁰	RCT	Orthogeriatric unit, Israel. May 2010 to Dec 2011	Consecutive Datients admitted within 48 hours of hip fracture injury, >65 years old, requiring surgery	Intervention: 82.3 (±6.1). Comparator: 83.7 (±6.4)	20	Tight calorie control, hospital diet + ONS (Ensure Plus). Pt, family, caregivers educate	Standard diet, Standard diet, 1800kcal & 80g Ptn daily, fixed ONS prescription continued if commenced prior to admit	Postoperative complications, LOS	Significantly lower total complications in intervention group (p=0.012), non- significant trend towards shorter LOS (p=0.061), no significant difference in mortality. Significantly higher mean daily energy intake (p=0.001), significant hetween correlation between cumulative energy balance and total complication rate (r=-0.417, p=0.003) as well as LOS (r=- 0.282, p=0.049)

	- (1							
Author/ year	Methods	Setting	Patient characteristics	Age (years)	Sample size	Treatment	Comparitor	Outcomes	Results
Roth, 2013 ⁸¹	RCT	Switzerland, Sep 2008 – Mar 2011	Consecutive bladder cancer patients undergoing cystectomy	Intervention: 67 (34–80). Comparator: 66 (30–86)	157	PN providing 1860kcal/day from postoperative day 1–6 + oral fluid from postoperative day 1, solid diet commenced on return of bowel sounds & fluids well tolerated n=74	IV fluids + oral fluid from postoperative day 1, solid diet commenced on return of bowel sounds & fluids well tolerated n=83	Infectious complications, postop mortality, LOS, wound dehiscence	Significant increase in postoperative complications (p=0.013), Significant increase in infectious complications (p=0.001), no difference in mortality, no difference in LOS (p=0.37)
Gao, 2018 ⁸²	RCT	China, Jun 2007– 2013	Admitted for sacretectomy	Intervention: 57.44 (±10.76). Comparator: 51.76 (±10.2)	48	Liquid diet (Nutrison Fibre) 25kCal/ kg for 3 days pre-operatively, fasted with bowel preparation night before surgery. Postoperative PN, 25kCal/kg non- protein calories for 7 days until gradual re-introduction of oral diet. n=24	Liquid diet (Nutrison Fibre) 25kCal/kg for 3 days pre- operatively, fasted with bowel preparation night before surgery. EN, Nutrison Fibre, 25kcal/kg day 1-7 post surgery then gradual re-introduction of oral intake. n=23	Surgical site infections, healing time, LOS	Decreased healing time, surgical site infections, and LOS (p<0.05)
Chen, 2017 ⁸³	RCT	China, Jan 2014 - Dec 2016	Confirmed gastric outlet obstruction with upper GI contrast and gastroscopy, age 18–80, surgically curable disease	Intervention: 52.1 (±13.2). Comparator: 48.6 (±12.5)	8	Total daily caloric intake 35kcal/day EN + top up PN to goal calorie target. 500mL feed day 1, increased be 500mL/ day every 24 hours until target reached for 14 days pre- surgery. Post-op PN transitioned to EN as GI functioned recovered to meet 35kCal/kg. n=37	PN (all in one bag) caloric goal maintained for 7 days pre- op. Postop PN transitioned to EN as GI functioned recovered to meet 35kCal/kg. n=31	LOS, postop LOS , surgical site infections, anastomotic fistula, poor wound healing, mortality	Significantly improved wound healing (p=0.042), significantly decreased surgical site infections (0.046), no difference in anastomotic leak (p=0.136), longer LOS but shorter postop LOS (p=0.001)
Ohura, 2011 ⁶³	Multi- centre RCT	Japan, medical institutions	Tube-fed patients with stage III-IV PI in sacral, coccygeal, trochanteric, calcaneal regions	58-95	60	Racol tube feed at Harris Benedict equation BEEx1.1x1.3−1.5. n=30	Racol tube feed at standard prescription (not stated). n=30	Healing (NPUAP classification and DESIGN tool) ⁴⁶ . Nutritional parameters	Significant improvement in wound size (decrease) in intervention comparator (p<0.001)
AOv – anti-oxid	ant: REE – haca	l energy expenditure: EE	- Actimated Anerov re	2 – G – C	aetrointecting	al· NGT – nasodastric tube.	N IT – paso iaimal tuba:	ONS - ON support: Dtn -	- protein

35

Table 5 continued. Early EN, PN and/or ON support strategies: characteristics of studies

Fuiita et al.⁶⁸ amongst others reported in this review. This is of particular importance in determining the effect of a nutritional intervention on wound healing, especially given the difference seen in nutritional interventional effectiveness by many studies that have included nutritional status as part of their outcome analysis. Although one would assume than malnourished patients may have better wound healing outcomes than well-nourished patients, this effect was not observed in the study conducted by Leigh et al., where well-nourished patients showed a trend towards improved healing rates compared to malnourished participants when supplemented with Arg for non-healing Pls⁴⁶. In addition to this complexity in literature interpretation, some studies explicitly measured and reported on compliance with ON supplementation and accounted for this in their statistical analysis or reporting^{46–48,50,61}, whilst other studies failed to report on compliance^{53,55,60}. Such distinctions in nutritional status and compliance is important for clinicians to apply the correct nutrient prescriptions to their populations for optimal efficacy and fiscal justifications.

Another limitation in interpreting and comparing efficacy of nutritional intervention strategies reported in the current literature is the lack of standardisation in wound healing outcome measures used. For example, the fairly homogenous wound group of PIs, multiple tools such as the PUSH, overall percentage size, change in surface area, and time to healing were all reported for this outcome⁴⁶⁻⁴⁸. Whether effectiveness seen in chronic wounds is translatable to acute wounds, and vice versa, is also unknown.

Despite the limitation of this review only searching one database representing all Medline listed investigations, the majority of primary studies identified were single centre and small in sample size. This likely reflects the complexity in conducting high guality nutrition intervention research given the limitations of population type and numbers. One example of this issue is the comparatively large study conducted by Falewee et al.⁵⁶. Despite having a strong study design including eight recruitment centres, their pre-determined sample size was not met due to inadequate recruitment in the allocated study timeframe⁵⁶. The majority of studies identified were also conducted in adult populations, with only five identified being conducted in paediatric participants - three in burn injury, one in ileostomy/colostomy closure, one in intestinal resection^{64,72,75,77,85}. This paucity in paediatric wound healing literature is of concern given the importance of adequate nutrition for optimal growth and development in this population⁸⁶. This may be reflective of the small numbers of paediatric wounds presenting comparatively to the adult population or complexities in establishing or conducting research in this setting. This lack of specific evidence for the paediatric population potentially hampers the delivery of optimal nutrition support for wound healing in this setting.

Health professionals endeavour to base their recommendations on the available evidence, and guidelines

aim to assist translation of evidence into practice¹. This review identified that the more recent evidence for some of the key recognised macro and micronutrients involved in wound healing is, in many instances, weak, and often this is due to research design and reporting limitations. Encouraging further research in specific areas of deficiency, such as that identified in the paediatric population, is recommended. That being said, health professionals should always be recommending adequate amounts of highly nutritious food and fluids for general wellbeing in accordance with the guidelines for healthy eating⁸⁶. When it comes to aiding wound healing in complex wounds, nutrition is an integral strategy to complement good wound hygiene practice and care¹.

Nutrition as an important consideration for best outcomes has been included in the care of complex burns for decades⁸⁷. so why is it not an automatic consideration in slow to heal wounds, chronic wounds, dehisced surgical wounds? It seems that because there is no specific evidence for each wound type and nutrient intervention, the nutrition aspect has often given less importance. Nevertheless, some of these studies provide sufficiently strong evidence to influence clinical practice. For example, arginine administered as a single interventional agent appears to convey some benefits for wound healing outcomes in the surgical oncology patient populations, at a higher administered doses (12-20g/dav) for at least 10 days. Evidence in other populations remains insufficient to support its routine use. It also must be noted that there are recommendations for caution with its administration in the ICU setting. The Canadian Critical Care Guidelines, considering unpublished evidence showing possible increased mortality when initiated in severely septic medical ICU patients (however, not in patients who are already established on Arg who later become septic), make this recommendation⁸⁸.

The combination of arginine with other anti-oxidant or immune-modulating appears to offer benefit in malnourished patients with chronic wounds such as PIs, and has been shown to convey cost benefits to care^{47,62}. The lack of effect seen in the systematic reviews identified as part of this search strategy are not surprising³⁹. This area of research is diverse in its inclusion criteria, doses and nutrients administered, outcome measures and often of small scale. This is prohibitive to the accurate pooling of data to determine effects, as well as the ability to ascertain the key nutrients providing benefit. Regarding the management of chronic wounds, dosage of 4.5-9g/day administered orally appears effective. To strengthen this area of research, future studies should also employ cost benefit analysis to assist with determination of efficacy and translation of evidence into clinical practice for these types of nutritional strategies¹⁰.

The administration of Gln via the EN route appears to convey a beneficial effect, particularly in burns and trauma patients, compared to PN administration^{10,30}. This may be due to its

	Trans Tasman Dietetic Wound Care Group ⁹³	NPUAP ¹	PEN ⁹⁴
	Moderate risk of delayed PI healing	PI, malnourished or risk of malnutrition	PI, risk of malnutrition
Energy	30–35kcal/kg/day	30–35kcal/kg/day	30–35kcal/kg/day
Protein	1.25–1.5g/kg/day	1.25–1.5g/kg/day	1.25–1.5g/kg/day
Fluid	30–35mL/kg/day	Individualised based on clinical condition, goals of care	Individualised based on co-morbidities/ goals, symptoms

Table 6. Guideline r	macronutrient	recommendations

role as a primary metabolite for gut enterocytes, improving gut integrity and preventing known sources of sepsis such as bacterial translocation of the intestinal tract¹⁰. To elucidate this effect it is important to calculate Gln dosages in addition to total protein requirements. Similarly to Arg it is sometimes administered as part of combined immune-nutrition regimens which complicates the ability to determine the most beneficial nutrient^{29,59}. These regimens, however, have been proven to be safely administered in certain populations, and potentially may decrease time to healing and LOS⁸⁹⁻⁹². The inclusion of the omega-3 fatty acids EPA and DHA likely improves the effect of these immune-nutrition regimes as they are metabolised to comparatively less inflammatory and less immunosuppressive metabolites than omega-6 fatty acids¹⁰. Dosage of supplementation appears to be more important with GIn than Arg, with ≥0.3g/kg/day via the EN route required to be effective³⁰. Dosage studies have proved that up to 60g/ day of GIn appears to be safe to administer. Importantly, the administration of Arg and Gln, for the purpose of improving wound healing, should be provided separately to the overall alobal protein required. If given as part of the general protein requirements or possibly where insufficient energy intake is consumed, they are utilised via different metabolic pathways negating their beneficial effects³⁰.

To elucidate the optimal implementation of research into clinical practice, multiple practice guidelines have been developed^{1,31,93,94}. These guidelines all support the use of determining malnutrition risk using appropriate and validated screening tools as the first step of clinical management^{1,93,94}. This should include weight status, weight history, and whether weight loss has occurred. Dietary adequacy of total nutrient intake should also be assessed, with guideline recommendations for macronutrients presented in Table 6^{1,93,94}. As part of a comprehensive nutritional assessment, the risk of delayed wound healing due to nutritional compromise should be accounted for; as discussed previously, this is a limiting factor for many studies identified as part of this review. Although all the presented guidelines agree that the current levels of evidence for the use of combined nutritional supplements (containing high protein, Arg +/- Gln, omega-3 fatty acids and micronutrients) remains low, their use is supported in surgical populations^{31,88} and for patients with greater than stage II or multiple pressure ulcers where nutritional requirements cannot be met with traditional ON support^{1,93,94}. Findings from this review do not support changes to the current guidelines supporting nutrition and its role in wound healing reported in Table 6 and elsewhere in this discussion. Whilst not an exhaustive list of available guidelines, they are supported by peak nutrition and wound healing groups^{1,31,87,88,93,94}. To ensure optimal wound healing in a clinical setting, following practice guidelines designed for relevant populations is a simple way to translate available evidence into the clinical setting until further large-scale, multi-centre, prospective nutrition intervention studies, including cost effectiveness outcomes, are available.

Conclusion

Nutrition is an integral component of best practice wound care. Despite the diversity of identified research over the past decade in this area, multiple nutritional strategies for various wound types are evolving. Current available guidelines provide broad consistency regarding macronutrient recommendations; however, evidence for other nutrient recommendations remains lacking, especially relating to optimal timing and dosage. Given the low cost in delivery of nutrition interventions compared to other complementary wound management strategies, such as surgical intervention and specialised wound dressings, this area warrants greater attention. Early nutrition screening and appropriate nutritional intervention for all wound types should be routine clinical practice.

Acknowledgements

Pratyush Misra, brand management, Nestlé facilitated meetings of the authors and encouraged the production of this manuscript.

Conflict of interest

The authors are members of the Nestlé nutrition and wound healing/prevention board and have received an honorarium for this consultancy, but received no direct funding for the production of this manuscript.

Funding

The authors received no funding for this study.

References

- 1. European Pressure Ulcer Advisory Panel (EPUAP), National Pressure Injury Advisory Panel (NPIAP) and Pan Pacific Pressure Injury Alliance (PPPIA). Prevention and treatment of pressure ulcers/injuries: clinical practice guideline. The international guideline. Emily Haesler (Ed.). EPUAP/NPIAP/PPPIA; 2019.
- 2. Nguyen KH, Chaboyer W, Whitty JA. Pressure injury in Australian hospitals: a cost-of-illness study. Aust HIth Rev 2015.
- Clinical Excellence Commission. 2017 NSW pressure injury point prevalence survey report. Sydney: Clinical Excellence Commission; 2018.
- 4. World Union of Wound Healing Societies Concensus Document. Surgical wound dehiscence: improving prevention and outcomes. Wounds Int 2018.
- 5. Thomas DR, Goode PS, Tarquine PH, Allman RM. Hospitalacquired pressure ulcers and risk of death. J Am Geriatric Soc 1996;44(12):1435–40.
- Agarwal E, Ferguson M, Banks M, Bauer J, Capra S, Isenring E. Nutritional status and dietary intake of acute care patients: results from the Nutrition Care Day Survey 2010. Clin Nutr 2012;31(1):41–7.
- 7. Bold J. Supporting evidence-based practice in nutrition and hydration. Wounds UK 2020;16(2):22-8.
- Molnar JA, Vlad LG, Gumus T. Nutrition and chronic wounds: improving clinical outcomes. Plastic Reconst Surg 2016;138(3 Suppl):71s–81s.
- Posthauer ME, Banks M, Dorner B, Schols JM. The role of nutrition for pressure ulcer management: National Pressure Ulcer Advisory Panel, European Pressure Ulcer Advisory Panel, and Pan Pacific Pressure Injury Alliance white paper. Adv Skin Wound Care 2015;28(4):175–88; quiz 89–90.
- Kurmis R, Parker A, Greenwood J. The use of immunonutrition in burn injury care: where are we? J Burn Care Res 2010;31(5):677– 91.
- 11. Todd SR, Gonzalez EA, Turner K, Kozar RA. Update on postinjury nutrition. Curr Opin Crit Care 2008;14(6):690–5.
- 12. Caldis-Coutris N, Gawaziuk JP, Logsetty S. Zinc supplementation in burn patients. J Burn Care Res 2012;33(5):678–82.
- 13. Wild T, Rahbarnia A, Kellner M, Sobotka L, Eberlein T. Basics in nutrition and wound healing. Nutr 2010;26(9):862–6.
- 14. Kavalukas SL, Barbul A. Nutrition and wound healing: an update. Plastic Reconstruct Surg 2011;127 Suppl 1:38s–43s.
- 15. Taylor C. Importance of nutrition in preventing and treating pressure ulcers. Nurs Older People 2017;29(6):33–9.
- Little MO. Nutrition and skin ulcers. Curr Op Clin Nutr Metabolic Care 2013;16(1):39–49.
- 17. Mohseni S, Bayani M, Bahmani F, Tajabadi-Ebrahimi M, Bayani MA, Jafari P, et al. The beneficial effects of probiotic administration on wound healing and metabolic status in patients with diabetic foot ulcer: a randomized, double-blind, placebo-controlled trial. Diabet/Metabolism Res Rev 2018;34(3).
- Serra R, Grande R, Butrico L, Buffone G, Calio FG, Squillace A, et al. Effects of a new nutraceutical substance on clinical and molecular parameters in patients with chronic venous ulceration. Int Wound J 2016;13(1):88–96.
- Ekinci O, Yanik S, Terzioglu Bebitoglu B, Yilmaz Akyuz E, Dokuyucu A, Erdem S. Effect of calcium beta-Hydroxy-beta-Methylbutyrate (CaHMB), vitamin D, and protein supplementation

on postoperative immobilization in malnourished older adult patients with hip fracture: a randomized controlled study. Nutr Clin Prac 2016;31(6):829–35.

- 20. Burkiewicz CJ, Guadagnin FA, Skare TL, do Nascimento MM, Servin SC, de Souza GD. Vitamin D and skin repair: a prospective, double-blind and placebo controlled study in the healing of leg ulcers. Revista do Colegio Brasileiro de Cirurgioes 2012;39(5):401–7.
- Kotzampassi K, Stavrou G, Damoraki G, Georgitsi M, Basdanis G, Tsaousi G, et al. A four-probiotics regimen reduces postoperative complications after colorectal surgery: a randomized, doubleblind, placebo-controlled study. World J Surg 2015;39(11):2776– 83.
- de Franciscis S, De Sarro G, Longo P, Buffone G, Molinari V, Stillitano DM, et al. Hyperhomocysteinaemia and chronic venous ulcers. Int Wound J 2015;12(1):22–6.
- Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ (Clin Res Ed) 2009;339:b2535.
- 24. Debats IB, Koeneman MM, Booi DI, Bekers O, van der Hulst RR. Intravenous arginine and human skin graft donor site healing: a randomized controlled trial. Burns 2011;37(3):420–6.
- 25. De Luis DA, Izaola O, Cuellar L, Terroba MC, Martin T, Ventosa M. A randomized double-blind clinical trial with two different doses of arginine enhanced enteral nutrition in postsurgical cancer patients. Europ Rev Med Pharmacol Sci 2010;14(11):941–5.
- 26. De Luis DA, Izaola O, Terroba MC, Cuellar L, Ventosa M, Martin T. Effect of three different doses of arginine enhanced enteral nutrition on nutritional status and outcomes in well nourished postsurgical cancer patients: a randomized single blinded prospective trial. Europ Rev Med Pharmacol Sci 2015;19(6):950–5.
- 27. Marti-Carvajal A, Knght-Madden J, Martinez-Zapata MJ. Interventions for treating leg ulcers in people with sickle cell disease. Cochrane Database Syst Rev 2014(12).
- 28. Perez-Barcena J, Marse P, Zabalegui-Perez A, Corral E, Herran-Monge R, Gero-Escapa M, et al. A randomized trial of intravenous glutamine supplementation in trauma ICU patients. Intensive Care Med 2014;40(4):539–47.
- Blass SC, Goost H, Tolba RH, Stoffel-Wagner B, Kabir K, Burger C, et al. Time to wound closure in trauma patients with disorders in wound healing is shortened by supplements containing antioxidant micronutrients and glutamine: a PRCT. Clinical Nutr 2012;31(4):469–75.
- Tan H, Danilla S, Murray A, Serra R, El Dib R, Henderson T, et al. Immunonutrition as an adjuvant therapy for burns. Cochrane Database Syst Rev 2014(12).
- McClave SA, Taylor BE, Martindale RG, Warren MM, Johnson DR, Braunschweig C, et al. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). JPEN 2016;40(2):159–211.
- 32. Theilla M, Schwartz B, Cohen J, Shapiro H, Anbar R, Singer P. Impact of a nutritional formula enriched in fish oil and micronutrients on pressure ulcers in critical care patients. Am J Crit Care 2012;21(4):e102–9.
- 33. Theilla M, Schwartz B, Zimra Y, Shapiro H, Anbar R, Rabizadeh E, et al. Enteral n-3 fatty acids and micronutrients enhance percentage of positive neutrophil and lymphocyte adhesion molecules: a potential mediator of pressure ulcer healing in critically ill patients. Br J Nutr 2012;107(7):1056–61.
- Tihista S, Echavarria E. Effect of omega 3 polyunsaturated fatty acids derived from fish oil in major burn patients: a prospective randomized controlled pilot trial. Clin Nutr 2018;37(1):107–12.

- 35. Soleimani Z, Hashemdokht F, Bahmani F, Taghizadeh M, Memarzadeh MR, Asemi Z. Clinical and metabolic response to flaxseed oil omega-3 fatty acids supplementation in patients with diabetic foot ulcer: a randomized, double-blind, placebocontrolled trial. J Diabet Complication 2017;31(9):1394–400.
- 36. Momen-Heravi M, Barahimi E, Razzaghi R, Bahmani F, Gilasi HR, Asemi Z. The effects of zinc supplementation on wound healing and metabolic status in patients with diabetic foot ulcer: a randomized, double-blind, placebo-controlled trial. Wound Repair Regen 2017;25(3):512–20.
- Sakae K, Agata T, Kamide R, Yanagisawa H. Effects of L-carnosine and its zinc complex (Polaprezinc) on pressure ulcer healing. Nutr Clin Pract 2013;28(5):609–16.
- Sakae K, Yanagisawa H. Oral treatment of pressure ulcers with polaprezinc (zinc L-carnosine complex): 8-week open-label trial. Biolog Trace Element Res 2014;158(3):280–8.
- 39. Langer G, Fink A. Nutritional interventions for preventing and treating pressure ulcers. Cochrane Database Syst Rev 2014(6):Cd003216.
- 40. Wilkinson E. Oral zinc for arterial and venous leg ulcers. Cochrane Database Syst Rev 2014(9).
- Razzaghi R, Pourbagheri H, Momen-Heravi M, Bahmani F, Shadi J, Soleimani Z, et al. The effects of vitamin D supplementation on wound healing and metabolic status in patients with diabetic foot ulcer: a randomized, double-blind, placebo-controlled trial. J Diabet Complication 2017;31(4):766–72.
- Gottschlich MM, Mayes T, Khoury J, Kagan RJ. Clinical trial of vitamin D2 vs D3 supplementation in critically ill pediatric burn patients. JPEN 2017;41(3):412–21.
- 43. Li X, Tang L, Lin YF, Xie GF. Role of vitamin C in wound healing after dental implant surgery in patients treated with bone grafts and patients with chronic periodontitis. Clin Implant Dent Related Res 2018;20(5):793–8.
- 44. Razzaghi R, Pidar F, Momen-Heravi M, Bahmani F, Akbari H, Asemi Z. Magnesium supplementation and the effects on wound healing and metabolic status in patients with diabetic foot ulcer: a randomized, double-blind, placebo-controlled trial. Biolog Trace Element Res 2018;181(2):207–15.
- 45. Afzali H, Jafari Kashi AH, Momen-Heravi M, Razzaghi R, Amirani E, Bahmani F, et al. The effects of magnesium and vitamin E co-supplementation on wound healing and metabolic status in patients with diabetic foot ulcer: a randomized, double-blind, placebo-controlled trial. Wound Repair Regen 2019;27(3):277–84.
- Leigh B, Desneves K, Rafferty J, Pearce L, King S, Woodward MC, et al. The effect of different doses of an arginine-containing supplement on the healing of pressure ulcers. J Wound Care 2012;21(3):150–6.
- 47. Cereda E, Klersy C, Serioli M, Crespi A, D'Andrea F. A nutritional formula enriched with arginine, zinc, and antioxidants for the healing of pressure ulcers: a randomized trial. Annal Int Med 2015;162(3):167–74.
- 48. van Anholt RD, Sobotka L, Meijer EP, Heyman H, Groen HW, Topinkova E, et al. Specific nutritional support accelerates pressure ulcer healing and reduces wound care intensity in nonmalnourished patients. Nutr 2010;26(9):867–72.
- 49. Wong A, Chew A, Wang CM, Ong L, Zhang SH, Young S. The use of a specialised amino acid mixture for pressure ulcers: a placebo-controlled trial. J Wound Care 2014;23(5):259–60, 62–4, 66–9.
- Banks MD, Ross LJ, Webster J, Mudge A, Stankiewicz M, Dwyer K, et al. Pressure ulcer healing with an intensive nutrition intervention in an acute setting: a pilot randomised controlled trial. J Wound Care 2016;25(7):384–92.

- Armstrong DG, Hanft JR, Driver VR, Smith AP, Lazaro-Martinez JL, Reyzelman AM, et al. Effect of oral nutritional supplementation on wound healing in diabetic foot ulcers: a prospective randomized controlled trial. Diabetic Med 2014;31(9):1069–77.
- 52. Bauer JD, Isenring E, Waterhouse M. The effectiveness of a specialised oral nutrition supplement on outcomes in patients with chronic wounds: a pragmatic randomised study. J Human Nutr Dietetic 2013;26(5):452–8.
- 53. Kaya SO, Akcam TI, Ceylan KC, Samancilar O, Ozturk O, Usluer O. Is preoperative protein-rich nutrition effective on postoperative outcome in non-small cell lung cancer surgery? A prospective randomized study. J Cardiothoracic Surg 2016;11:14.
- 54. Moya P, Miranda E, Soriano-Irigaray L, Arroyo A, Aguilar MD, Bellon M, et al. Perioperative immunonutrition in normonourished patients undergoing laparoscopic colorectal resection. Surg Endoscop 2016;30(11):4946–53.
- 55. Moya P, Soriano-Irigaray L, Ramirez JM, Garcea A, Blasco O, Blanco FJ, et al. Perioperative standard oral nutrition supplements versus immunonutrition in patients undergoing colorectal resection in an enhanced recovery (ERAS) protocol: a multicenter randomized clinical trial (SONVI Study). Medicine 2016;95(21):e3704.
- 56. Falewee MN, Schilf A, Boufflers E, Cartier C, Bachmann P, Pressoir M, et al. Reduced infections with perioperative immunonutrition in head and neck cancer: exploratory results of a multicenter, prospective, randomized, double-blind study. Clin Nutr 2014;33(5):776–84.
- 57. Felekis D, Eleftheriadou A, Papadakos G, Bosinakou I, Ferekidou E, Kandiloros D, et al. Effect of perioperative immuno-enhanced enteral nutrition on inflammatory response, nutritional status, and outcomes in head and neck cancer patients undergoing major surgery. Nutr Cancer 2010;62(8):1105–12.
- 58. Fujitani K, Tsujinaka T, Fujita J, Miyashiro I, Imamura H, Kimura Y, et al. Prospective randomized trial of preoperative enteral immunonutrition followed by elective total gastrectomy for gastric cancer. Br J Surg 2012;99(5):621–9.
- Klek S, Sierzega M, Szybinski P, Szczepanek K, Scislo L, Walewska E, et al. The immunomodulating enteral nutrition in malnourished surgical patients – a prospective, randomized, double-blind clinical trial. Clin Nutr 2011;30(3):282–8.
- Hamilton-Reeves JM, Bechtel MD, Hand LK, Schleper A, Yankee TM, Chalise P, et al. Effects of immunonutrition for cystectomy on immune response and infection rates: a pilot randomized controlled clinical trial. Eur Urol 2016;69(3):389–92.
- Brewer S, Desneves K, Pearce L, Mills K, Dunn L, Brown D, et al. Effect of an arginine-containing nutritional supplement on pressure ulcer healing in community spinal patients. J Wound Care 2010;19(7):311–6.
- Cereda E, Klersy C, Andreola M, Pisati R, Schols JM, Caccialanza R, et al. Cost-effectiveness of a disease-specific oral nutritional support for pressure ulcer healing. Clin Nutr 2017;36(1):246–52.
- Ohura T, Nakajo T, Okada S, Omura K, Adachi K. Evaluation of effects of nutrition intervention on healing of pressure ulcers and nutritional states (randomized controlled trial). Wound Repair Regen 2011;19(3):330–6.
- Mayes T, Gottschlich MM, James LE, Allgeier C, Weitz J, Kagan RJ. Clinical safety and efficacy of probiotic administration following burn injury. J Burn Care Res 2015;36(1):92–9.
- Raposio E, Grieco MP, Caleffi E. Evaluation of plasma oxidative stress, with or without antioxidant supplementation, in superficial partial thickness burn patients: a pilot study. J Plastic Surg Hand Surg 2017;51(6):393–8.

- 66. Bell JJ, Bauer JD, Capra S, Pulle RC. Multidisciplinary, multimodal nutritional care in acute hip fracture inpatients – results of a pragmatic intervention. Clin Nutr 2014;33(6):1101–7.
- Najmi M, Vahdat Shariatpanahi Z, Tolouei M, Amiri Z. Effect of oral olive oil on healing of 10–20% total body surface area burn wounds in hospitalized patients. Burns 2015;41(3):493–6.
- 68. Fujita T, Okada N, Kanamori J, Sato T, Mayanagi S, Torigoe K, et al. Thermogenesis induced by amino acid administration prevents intraoperative hypothermia and reduces postoperative infectious complications after thoracoscopic esophagectomy. Dis Esophagus 2017;30(1):1–7.
- 69. Babajafari S, Akhlaghi M, Mazloomi SM, Ayaz M, Noorafshan A, Jafari P, et al. The effect of isolated soy protein adjunctive with flaxseed oil on markers of inflammation, oxidative stress, acute phase proteins, and wound healing of burn patients; a randomized clinical trial. Burns 2018;44(1):140–9.
- Vicic VK, Radman M, Kovacic V. Early initiation of enteral nutrition improves outcomes in burn disease. Asia Pacific J Clin Nutr 2013;22(4):543–7.
- Barlow R, Price P, Reid TD, Hunt S, Clark GW, Havard TJ, et al. Prospective multicentre randomised controlled trial of early enteral nutrition for patients undergoing major upper gastrointestinal surgical resection. Clin Nutr 2011;30(5):560–6.
- 72. Khorasani EN, Mansouri F. Effect of early enteral nutrition on morbidity and mortality in children with burns. Burns 2010;36(7):1067–71.
- Li CH, Chen DP, Yang J. Enteral nutritional support in patients with head injuries after craniocerebral surgery. Turkish Neurosurg 2015;25(6):873–6.
- 74. Kim JM, Joh JW, Kim HJ, Kim SH, Rha M, Sinn DH, et al. Early enteral feeding after living donor liver transplantation prevents infectious complications: a prospective pilot study. Medicine 2015;94(44):e1771.
- 75. Yadav PS, Choudhury SR, Grover JK, Gupta A, Chadha R, Sigalet DL. Early feeding in pediatric patients following stoma closure in a resource limited environment. J Pediatr Surg 2013;48(5):977–82.
- Pragatheeswarane M, Muthukumarassamy R, Kadambari D, Kate V. Early oral feeding vs. traditional feeding in patients undergoing elective open bowel surgery – a randomized controlled trial. J Gastrointest Surg 2014;18(5):1017–23.
- 77. Amanollahi O, Azizi B. The comparative study of the outcomes of early and late oral feeding in intestinal anastomosis surgeries in children. Af J Paediatr Surg 2013;10(2):74–7.
- Botella-Carretero JI, Iglesias B, Balsa JA, Arrieta F, Zamarron I, Vazquez C. Perioperative oral nutritional supplements in normally or mildly undernourished geriatric patients submitted to surgery for hip fracture: a randomized clinical trial. Clin Nutr 2010;29(5):574–9.
- Fabian E, Gerstorfer I, Thaler HW, Stundner H, Biswas P, Elmadfa I. Nutritional supplementation affects postoperative oxidative stress and duration of hospitalization in patients with hip fracture. Wiener klinische Wochenschrift 2011;123(3–4):88– 93.
- Anbar R, Beloosesky Y, Cohen J, Madar Z, Weiss A, Theilla M, et al. Tight calorie control in geriatric patients following hip fracture decreases complications: a randomized, controlled study. Clin Nutr 2014;33(1):23–8.
- Roth B, Birkhauser FD, Zehnder P, Thalmann GN, Huwyler M, Burkhard FC, et al. Parenteral nutrition does not improve postoperative recovery from radical cystectomy: results of a prospective randomised trial. Europ Urol 2013;63(3):475–82.

- 82. Gao S, Zheng Y, Liu X, Tian Z, Zhao Y. Effect of early fasting and total parenteral nutrition support on the healing of incision and nutritional status in patients after sacrectomy. Orthopaedic Traumatol Surg Res 2018;104(4):539–44.
- Chen ZH, Lin SY, Dai QB, Hua J, Chen SQ. The effects of preoperative enteral nutrition from nasal feeding tubes on gastric outlet obstruction. Nutrient 2017;9(4).
- Masters B, Aarabi S, Sidhwa F, Wood F. High-carbohydrate, high-protein, low-fat versus low-carbohydrate, high-protein, high-fat enteral feeds for burns. Cochrane Database Syst Rev 2012(1).
- Marin MC, Osimani NE, Rey GE, de Alaniz MJ. n-3 Fatty acid supplementation in burned paediatric patients. Acta Paediatrica 2009;98(12):1982–7.
- Australian Government, National Health and Medical Research Council. Australian guide to healthy eating [updated 01/05/2017]. Available from: https://www.eatforhealth.gov.au/guidelines/ australian-guide-healthy-eating.
- Rousseau AF, Losser MR, Ichai C, Berger MM. ESPEN endorsed recommendations: nutritional therapy in major burns. Clin Nutr (Edinburgh, Scotland) 2013;32(4):497–502.
- The Canadian Critical Care Society. The 2015 clinical practice guidelines on critical care nutrition; 2015. Available from: https://www.criticalcarenutrition.com/resources/cpgs/pastguidelines/2015.
- Liu P, Shen WQ, Chen HL. Efficacy of arginine-enriched enteral formulas for the healing of pressure ulcers: a systematic review. J Wound Care 2017;26(6):319–23.
- 90. Alexander JW, Supp DM. Role of arginine and omega-3 fatty acids in wound healing and infection. Adv Wound Care 2014;3(11):682–90.
- Ellinger S. Micronutrients, arginine, and glutamine: does supplementation provide an efficient tool for prevention and treatment of different kinds of wounds? Adv Wound Care 2014;3(11):691–707.
- 92. Chapman BR, Mills K, Pearce LM, Crowe T. Use of an arginineenriched oral nutrition supplement in the healing of pressure ulcers in patients with spinal cord injuries: an observational study. Nutr Dietetic 2011;68:208–13.
- 93. Trans Tasman Dietetic Wound Care Group. Evidence based practice guidelines for the dietetic management of adults with pressure injuries. Dietitians Association of Australia and Dietitians New Zealand; 2011.
- 94. PEN. Knowledge pathway: wound care and pressure injuries. Category: Health condition/Disease. Dietitians of Canada; 2019.